Cover image
Try Now
2025-04-08

此模型上下文协议(MCP)服务器提供了根据JSON模板从文本中构建和提取数据的工具。

3 years

Works with Finder

1

Github Watches

0

Github Forks

1

Github Stars

Custom Context MCP Server

This Model Context Protocol (MCP) server provides tools for structuring and extracting data from text according to JSON templates.

Features

Text-to-JSON Transformation

  • Group and structure text based on JSON templates with placeholders
  • Extract information from AI-generated text into structured JSON formats
  • Support for any arbitrary JSON structure with nested placeholders
  • Intelligent extraction of key-value pairs from text
  • Process AI outputs into structured data for downstream applications

Getting Started

Installation

npm install

Running the server

npm start

For development with hot reloading:

npm run dev:watch

Usage

This MCP server provides two main tools:

1. Group Text by JSON (group-text-by-json)

This tool takes a JSON template with placeholders and generates a prompt for an AI to group text according to the template's structure.

{
	"template": "{ \"type\": \"<type>\", \"text\": \"<text>\" }"
}

The tool analyzes the template, extracts placeholder keys, and returns a prompt that guides the AI to extract information in a key-value format.

2. Text to JSON (text-to-json)

This tool takes the grouped text output from the previous step and converts it into a structured JSON object based on the original template.

{
	"template": "{ \"type\": \"<type>\", \"text\": \"<text>\" }",
	"text": "type: pen\ntext: This is a blue pen"
}

It extracts key-value pairs from the text and structures them according to the template.

Example Workflow

  1. Define a JSON template with placeholders:

    {
    	"item": {
    		"name": "<name>",
    		"price": "<price>",
    		"description": "<description>"
    	}
    }
    
  2. Use group-text-by-json to create a prompt for AI:

    • The tool identifies placeholder keys: name, price, description
    • Generates a prompt instructing the AI to group information by these keys
  3. Send the prompt to an AI model and receive grouped text:

    name: Blue Pen
    price: $2.99
    description: A smooth-writing ballpoint pen with blue ink
    
  4. Use text-to-json to convert the grouped text to JSON:

    • Result:
    {
    	"item": {
    		"name": "Blue Pen",
    		"price": "$2.99",
    		"description": "A smooth-writing ballpoint pen with blue ink"
    	}
    }
    

Template Format

Templates can include placeholders anywhere within a valid JSON structure:

  • Use angle brackets to define placeholders: <name>, <type>, <price>, etc.
  • The template must be a valid JSON string
  • Placeholders can be at any level of nesting
  • Supports complex nested structures

Example template with nested placeholders:

{
	"product": {
		"details": {
			"name": "<name>",
			"category": "<category>"
		},
		"pricing": {
			"amount": "<price>",
			"currency": "USD"
		}
	},
	"metadata": {
		"timestamp": "2023-09-01T12:00:00Z"
	}
}

Implementation Details

The server works by:

  1. Analyzing JSON templates to extract placeholder keys
  2. Generating prompts that guide AI models to extract information by these keys
  3. Parsing AI-generated text to extract key-value pairs
  4. Reconstructing JSON objects based on the original template structure

Development

Prerequisites

  • Node.js v18 or higher
  • npm or yarn

Build and Run

# Install dependencies
npm install

# Build the project
npm run build

# Run the server
npm start

# Development with hot reloading
npm run dev:watch

Custom Hot Reloading

This project includes a custom hot reloading setup that combines:

  • nodemon: Watches for file changes in the src directory and rebuilds TypeScript files
  • browser-sync: Automatically refreshes the browser when build files change
  • Concurrent execution: Runs both services simultaneously with output synchronization

The setup is configured in:

  • nodemon.json: Controls TypeScript watching and rebuilding
  • package.json: Uses concurrently to run nodemon and browser-sync together

To use the custom hot reloading feature:

npm run dev:watch

This creates a development environment where:

  1. TypeScript files are automatically rebuilt when changed
  2. The MCP server restarts with the updated code
  3. Connected browsers refresh to show the latest changes

Using with MCP Inspector

You can use the MCP Inspector for debugging:

npm run dev

This runs the server with the MCP Inspector for visual debugging of requests and responses.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Lists Tailwind CSS classes in monospaced font

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • jae-jae
  • MCP服务器使用剧作《无头浏览器》获取网页内容。

  • ravitemer
  • 一个功能强大的Neovim插件,用于管理MCP(模型上下文协议)服务器

  • patruff
  • Ollama和MCP服务器之间的桥梁,使本地LLMS可以使用模型上下文协议工具

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

  • av
  • 毫不费力地使用一个命令运行LLM后端,API,前端和服务。

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • modelcontextprotocol
  • 模型上下文协议服务器

    Reviews

    2 (1)
    Avatar
    user_ywfoLCzB
    2025-04-18

    I've been using custom-context-mcp by omer-ayhan for a while now, and it's truly a game-changer for managing multiple contexts with ease. The seamless integration and intuitive interface make it a must-have tool for any developer. Highly recommend checking it out on GitHub!