MCP cover image
See in Github
2025-01-16

MCP Server pour appliquer un modèle de résolution de problèmes inspiré de Claude Shannon

1

Github Watches

2

Github Forks

10

Github Stars

shannon-thinking

An MCP server implementing Claude Shannon's systematic problem-solving methodology. This server provides a tool that helps break down complex problems into structured thoughts following Shannon's approach of problem definition, mathematical modeling, and practical implementation.

Overview

Claude Shannon, known as the father of information theory, approached complex problems through a systematic methodology:

  1. Problem Definition: Strip the problem to its fundamental elements
  2. Constraints: Identify system limitations and boundaries
  3. Model: Develop mathematical/theoretical frameworks
  4. Proof/Validation: Validate through formal proofs or experimental testing
  5. Implementation/Experiment: Design and test practical solutions

This MCP server implements this methodology as a tool that helps guide systematic problem-solving through these stages.

Installation

npm install @modelcontextprotocol/server-shannon-thinking

Usage

The server provides a single tool named shannonthinking that structures problem-solving thoughts according to Shannon's methodology.

Each thought must include:

  • The actual thought content
  • Type (problem_definition/constraints/model/proof/implementation)
  • Thought number and total thoughts estimate
  • Confidence level (uncertainty: 0-1)
  • Dependencies on previous thoughts
  • Explicit assumptions
  • Whether another thought step is needed

Additional capabilities:

  • Revision: Thoughts can revise earlier steps as understanding evolves
  • Recheck: Mark steps that need re-examination with new information
  • Experimental Validation: Support for empirical testing alongside formal proofs
  • Implementation Notes: Practical constraints and proposed solutions

Example Usage

const thought = {
  thought: "The core problem can be defined as an information flow optimization",
  thoughtType: "problem_definition",
  thoughtNumber: 1,
  totalThoughts: 5,
  uncertainty: 0.2,
  dependencies: [],
  assumptions: ["System has finite capacity", "Information flow is continuous"],
  nextThoughtNeeded: true,
  // Optional: Mark as revision of earlier definition
  isRevision: false,
  // Optional: Indicate step needs recheck
  recheckStep: {
    stepToRecheck: "constraints",
    reason: "New capacity limitations discovered",
    newInformation: "System shows non-linear scaling"
  }
};

// Use with MCP client
const result = await client.callTool("shannonthinking", thought);

Features

  • Iterative Problem-Solving: Supports revisions and rechecks as understanding evolves
  • Flexible Validation: Combines formal proofs with experimental validation
  • Dependency Tracking: Explicitly tracks how thoughts build upon previous ones
  • Assumption Management: Requires clear documentation of assumptions
  • Confidence Levels: Quantifies uncertainty in each step
  • Rich Feedback: Formatted console output with color-coding, symbols, and validation results

Development

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test

# Watch mode during development
npm run watch

Tool Schema

The tool accepts thoughts with the following structure:

interface ShannonThought {
  thought: string;
  thoughtType: "problem_definition" | "constraints" | "model" | "proof" | "implementation";
  thoughtNumber: number;
  totalThoughts: number;
  uncertainty: number; // 0-1
  dependencies: number[];
  assumptions: string[];
  nextThoughtNeeded: boolean;
  
  // Optional revision fields
  isRevision?: boolean;
  revisesThought?: number;
  
  // Optional recheck field
  recheckStep?: {
    stepToRecheck: ThoughtType;
    reason: string;
    newInformation?: string;
  };
  
  // Optional validation fields
  proofElements?: {
    hypothesis: string;
    validation: string;
  };
  experimentalElements?: {
    testDescription: string;
    results: string;
    confidence: number; // 0-1
    limitations: string[];
  };
  
  // Optional implementation fields
  implementationNotes?: {
    practicalConstraints: string[];
    proposedSolution: string;
  };
}

When to Use

This tool is particularly valuable for:

  • Complex system analysis
  • Information processing problems
  • Engineering design challenges
  • Problems requiring theoretical frameworks
  • Optimization problems
  • Systems requiring practical implementation
  • Problems that need iterative refinement
  • Cases where experimental validation complements theory

License

MIT

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://jgadvisorycpa.com
  • This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • huahuayu
  • Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.

    Reviews

    4 (1)
    Avatar
    user_Imaq8CtU
    2025-04-16

    Shannon-thinking is an incredibly innovative tool developed by olaservo. It offers a unique approach to problem-solving and knowledge representation, making it a must-try for enthusiasts in the field. The repository on GitHub is well-documented, ensuring a smooth start for any new users. Highly recommended for anyone looking to explore new methodologies in computational thinking!