I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

dolphinscheduler-mcp
A Model Context Protocol (MCP) server for Apache Dolphinscheduler. This provides access to your Apache Dolphinshcheduler RESTful API V1 instance and the surrounding ecosystem.
1
Github Watches
1
Github Forks
3
Github Stars
DolphinScheduler MCP Server
A Model Context Protocol (MCP) server for Apache DolphinScheduler, allowing AI agents to interact with DolphinScheduler through a standardized protocol.
Overview
DolphinScheduler MCP provides a FastMCP-based server that exposes DolphinScheduler's REST API as a collection of tools that can be used by AI agents. The server acts as a bridge between AI models and DolphinScheduler, enabling AI-driven workflow management.
Features
- Full API coverage of DolphinScheduler functionality
- Standardized tool interfaces following the Model Context Protocol
- Easy configuration through environment variables or command-line arguments
- Comprehensive tool documentation
Installation
pip install dolphinscheduler-mcp
Configuration
Environment Variables
-
DOLPHINSCHEDULER_API_URL
: URL for the DolphinScheduler API (default: http://localhost:12345/dolphinscheduler) -
DOLPHINSCHEDULER_API_KEY
: API token for authentication with the DolphinScheduler API -
DOLPHINSCHEDULER_MCP_HOST
: Host to bind the MCP server (default: 0.0.0.0) -
DOLPHINSCHEDULER_MCP_PORT
: Port to bind the MCP server (default: 8089) -
DOLPHINSCHEDULER_MCP_LOG_LEVEL
: Logging level (default: INFO)
Usage
Command Line
Start the server using the command-line interface:
ds-mcp --host 0.0.0.0 --port 8089
Python API
from dolphinscheduler_mcp.server import run_server
# Start the server
run_server(host="0.0.0.0", port=8089)
Available Tools
The DolphinScheduler MCP Server provides tools for:
- Project Management
- Process Definition Management
- Process Instance Management
- Task Definition Management
- Scheduling Management
- Resource Management
- Data Source Management
- Alert Group Management
- Alert Plugin Management
- Worker Group Management
- Tenant Management
- User Management
- System Status Monitoring
Example Client Usage
from mcp_client import MCPClient
# Connect to the MCP server
client = MCPClient("http://localhost:8089/mcp")
# Get a list of projects
response = await client.invoke_tool("get-project-list")
# Create a new project
response = await client.invoke_tool(
"create-project",
{"name": "My AI Project", "description": "Project created by AI"}
)
License
Apache License 2.0
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Discover the most comprehensive and up-to-date collection of MCP servers in the market. This repository serves as a centralized hub, offering an extensive catalog of open-source and proprietary MCP servers, complete with features, documentation links, and contributors.
Micropython I2C-based manipulation of the MCP series GPIO expander, derived from Adafruit_MCP230xx
The all-in-one Desktop & Docker AI application with built-in RAG, AI agents, No-code agent builder, MCP compatibility, and more.
Mirror ofhttps://github.com/agentience/practices_mcp_server
Fair-code workflow automation platform with native AI capabilities. Combine visual building with custom code, self-host or cloud, 400+ integrations.
Mirror ofhttps://github.com/bitrefill/bitrefill-mcp-server
🧑🚀 全世界最好的LLM资料总结(Agent框架、辅助编程、数据处理、模型训练、模型推理、o1 模型、MCP、小语言模型、视觉语言模型) | Summary of the world's best LLM resources.
Reviews

user_v2h6PfLs
I've been an avid user of dolphinscheduler-mcp by ocean-zhc, and it has significantly streamlined my workflow. The intuitive interface and robust features make complex data scheduling a breeze. Highly recommend checking it out on GitHub if you're in need of a reliable data scheduling tool. Great job, ocean-zhc!