I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

ummon
La capa semántica para la ingeniería de software: conecte el código al significado, se desarrolle sobre la comprensión
3 years
Works with Finder
2
Github Watches
4
Github Forks
19
Github Stars
██╗ ██╗███╗ ███╗███╗ ███╗ ██████╗ ███╗ ██╗
██║ ██║████╗ ████║████╗ ████║██╔═══██╗████╗ ██║
██║ ██║██╔████╔██║██╔████╔██║██║ ██║██╔██╗ ██║
██║ ██║██║╚██╔╝██║██║╚██╔╝██║██║ ██║██║╚██╗██║
╚██████╔╝██║ ╚═╝ ██║██║ ╚═╝ ██║╚██████╔╝██║ ╚████║
╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═════╝ ╚═╝ ╚═══╝
"WHAT ARE THE ACTIVITIES OF A SYSTEM?
I HAVE NOT THE SLIGHTEST IDEA.
THE PATH APPEARS"
⚠️ WARNING: This project is in early development and is not yet stable. APIs and functionality may change significantly between versions.
Ummon is a code analysis tool that builds knowledge graphs from codebases to enhance understanding, improve AI assistance, and enable sophisticated querying. It creates connections between code entities (functions, classes, modules) and domain concepts, making it easier to reason about complex software systems and identify relevant code for specific tasks.
Named after the AI Ummon from Dan Simmons' Hyperion Cantos, this project provides deep insights into codebases that help both humans and AI assistants better understand software systems.
Core Features
-
Knowledge Graph Construction
- Indexes code to create a semantic representation
- Maps relationships between code entities (calls, imports, dependencies)
- Works with multiple languages (Rust, Python, JavaScript, Java)
- Supports both incremental updates and full rebuilds
- Tracks file modifications to minimize reprocessing
- See Knowledge Graph Documentation for more details
-
Advanced Querying System
- Query your codebase using a powerful structured query language or natural language
- Two main query types:
- Select queries:
select [entity_type] where [conditions]
- Traversal queries:
[source_type] [relationship] [target_type] where [conditions]
- Select queries:
- Natural language translation for user-friendly interaction
- Rich filtering capabilities with attribute conditions and logical operators
- Multiple output formats (text, JSON, CSV, tree)
- Examples: "select functions where name like 'auth%'", "show me all authentication functions"
- See Query System Documentation for more details
-
Relevance Agent
- Suggests code files relevant to a proposed change or query
- Uses semantic analysis to extract technical keywords from natural language descriptions
- Identifies related entities in the knowledge graph using entity relationships
- Scores files by relevance using both proximity and graph centrality metrics
- Enables context-aware assistance with a ranked list of most relevant files
- Example: For "Fix authentication bug", it identifies auth-related files
- See Relevance Agent Documentation for more details
-
Domain Model Extraction
- Uses LLMs to identify business entities and concepts
- Maps domain concepts to implementation details
- Creates a bridge between technical and business understanding
- See Domain Extraction Documentation for more details
Installation and Setup
cargo install ummon
Usage
# Index a codebase (performs incremental update by default)
ummon index /path/to/codebase
# Perform a full rebuild of the knowledge graph
ummon index /path/to/codebase --full
# Index with domain model extraction enabled
ummon index /path/to/codebase --enable-domain-extraction
# Specify a custom domain directory for extraction
ummon index /path/to/codebase --enable-domain-extraction --domain-dir models/
# Query using natural language
ummon query "show all authentication functions"
# Query using structured query language
ummon query "select functions where name like 'auth%'" --no-llm
# Find relationships between entities (traversal query)
ummon query "functions calling functions where name like 'validate%'" --no-llm
# Query with different output formats
ummon query "select functions" --format json
ummon query "select functions" --format csv
ummon query "select functions" --format tree
# Filter query results by type
ummon query "find api" --type-filter function
# Filter by file path pattern
ummon query "show all entities" --path src/auth
# Limit the number of results
ummon query "select functions" --limit 10
# Skip LLM processing for structured queries
ummon query "select functions where file_path like 'src/auth/%'" --no-llm
# Generate AI-assisted recommendations
ummon assist "implement a user registration function"
# Get relevant file suggestions for a proposed change
ummon assist --suggest-files "fix authentication token validation"
Configuration
Ummon uses environment variables only for sensitive information:
-
OPENROUTER_API_KEY
: API key for LLM services (required for queries and domain extraction)
All other configuration is handled through command-line flags.
Architecture
Ummon is built with a modular architecture:
- Language-specific parsers for code analysis
- Graph-based storage for entities and relationships
- SQLite database with metadata tracking for efficient updates
- Intelligent update mechanisms for incremental indexing
- LLM integration for semantic understanding
- Relevance agent for context-aware assistance
- Command-line interface for user interaction
Language Support
Ummon supports parsing and analysis of multiple programming languages:
- Rust: Class/structs, traits, implementations, functions, modules
- Python: Classes, functions, decorators, imports
- JavaScript: Classes, functions, arrow functions, imports
- Java: Classes, interfaces, methods, constructors, fields
The Java parser supports parsing of:
- Class and interface definitions with modifiers
- Constructor declarations
- Method declarations with parameter types
- Field declarations with types
- Package declarations and imports (including wildcard and static imports)
- Documentation comments extraction
- Method calls and relationships
Knowledge Graph Updates
Ummon provides two approaches to updating the knowledge graph:
Incremental Updates (Default)
When run without the --full
flag, Ummon will perform an incremental update:
- Tracks the timestamp of the last indexing operation
- Detects files modified since the last index using file modification times
- Removes only the entities and relationships associated with modified files
- Reindexes only the modified files, preserving the rest of the graph
- Significantly faster for large codebases with small changes
Full Rebuilds
When run with the --full
flag, Ummon will perform a complete rebuild:
- Purges all entities and relationships from the database
- Reindexes the entire codebase from scratch
- Useful after major changes or when the graph might be in an inconsistent state
Documentation
For more detailed documentation, see:
- Getting Started: Installation and quick start guides
- Feature Documentation: Detailed documentation for each feature
- CLI Reference: Complete command-line reference
- Configuration: Configuration options and best practices
Development
Build & Test Commands
# Build the project
cargo build
# Run the project
cargo run
# Run with specific command
cargo run -- index . # Incremental index of current directory
cargo run -- index . --full # Full rebuild of the knowledge graph
cargo run -- query "show funcs" # Query the knowledge graph
# Run tests
cargo test
cargo test -- --nocapture # Show test output
cargo test <test_name> # Run specific test
# Format code
cargo fmt
Test Resources
-
test/java/
: Java test files for parser testing-
Test.java
: Simple Java class for basic parsing -
ComplexExample.java
: Advanced Java features (generics, annotations, etc.)
-
-
test/javascript/
: JavaScript test files for testing
License
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven
A world class elite tech co-founder entrepreneur, expert in software development, entrepreneurship, marketing, coaching style leadership and aligned with ambition for excellence, global market penetration and worldy perspectives.
Advanced software engineer GPT that excels through nailing the basics.
A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo de https: //github.com/suhail-ak-s/mcp-typesense-server
本项目是一个钉钉 MCP (Protocolo del conector de mensajes )服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 支持员工信息查询和消息发送等功能。 支持员工信息查询和消息发送等功能。
Reviews

user_C3KrW587
As a dedicated user of the ummon application, I can't express how impressed I am with its functionality and ease of integration. Nayshins has done a remarkable job with this tool, making it a must-have for my projects. The seamless user experience and comprehensive features make ummon stand out in the crowd. Highly recommend checking it out at https://github.com/Nayshins/ummon!