
MCP-assistant-Azure-Prototyp
3 years
Works with Finder
0
Github Watches
0
Github Forks
0
Github Stars
MCP Assistant Azure Prototype
A lightweight prototype that uses the Model Context Protocol (MCP) to allow an LLM to:
- Schedule Microsoft Teams meetings via Microsoft Graph API
- Read/write files to your local filesystem using the MCP Filesystem server
- Interact through a user-friendly chat interface
Requirements
- Python 3.10+
-
.env
file with Microsoft Graph credentials - Node.js + npx
- Gradio (
pip install gradio
)
Environment Variables
Create a .env
file in the root directory with the following variables:
# Azure OpenAI Configuration
AZURE_OPENAI_API_KEY=your_azure_openai_api_key
AZURE_OPENAI_ENDPOINT=https://your-resource-name.openai.azure.com/
AZURE_OPENAI_DEPLOYMENT_NAME=your_deployment_name
AZURE_OPENAI_API_VERSION=your_api_version
# Microsoft Graph API Configuration
GRAPH_TENANT_ID=your_tenant_id
GRAPH_CLIENT_ID=your_client_id
GRAPH_CLIENT_SECRET=your_client_secret
GRAPH_USER_EMAIL=your_user_object_id
Usage
Option 1: Chat Interface (Recommended)
The chat interface provides a user-friendly way to interact with the assistant.
-
Run the Gradio chat interface:
python gradio_chat.py
-
Open your browser and navigate to:
http://127.0.0.1:7860/
-
Chat with your assistant! You can ask it to:
- Schedule meetings
- Check system status
- View calendar information
Option 2: Command Line (Original Method)
You can still use the original command line method:
-
Start the Graph Calendar MCP Server:
fastmcp run graph_server.py
-
Start the Filesystem MCP Server:
npx -y @modelcontextprotocol/server-filesystem ~/mcp_files
Servers: https://github.com/modelcontextprotocol/servers/tree/main
-
Run the Assistant:
MCP_PROMPT="Create a 30-minute meeting with [emails] today at 1pm and name the meeting Quick Sync." python main.py
Note: For filesystem operations, make sure to use a file path that's within the allowed directory (
~/mcp_files
).
How It Works
The application uses:
- Gradio for the web interface
- Asyncio for handling asynchronous operations
- Model Context Protocol (MCP) to connect the LLM with external tools
- Azure OpenAI API for the underlying AI model
Example Prompts
Try these examples in the chat interface:
- "Schedule a meeting with [colleague@example.com] tomorrow at 2pm titled 'Project Review'"
- "What's my calendar look like for next week?"
- "Check the current system status"
Troubleshooting
If you encounter any issues:
- Make sure all environment variables are set correctly
- Check that ports 7860, 8001, and 8002 are available
- Verify that your Azure OpenAI deployment is active
- Ensure you have the correct permissions for Microsoft Graph API
相关推荐
🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.
🧑🚀 全世界最好的 llm 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Zusammenfassung der weltbesten LLM -Ressourcen.
⛓️Rugele ist ein leichter, leistungsstarker, leistungsstarker, eingebetteter Komponenten-Orchestrierungsregel-Motor-Rahmen für GO.
PDF wissenschaftliche Papierübersetzung mit erhaltenen Formaten - 基于 ai 完整保留排版的 pdf 文档全文双语翻译 , 支持 支持 支持 支持 google/deeptl/ollama/openai 等服务 提供 cli/gui/mcp/docker/zotero
Erstellen Sie einfach LLM -Tools und -Argarten mit einfachen Bash/JavaScript/Python -Funktionen.
😎简单易用、🧩丰富生态 - 大模型原生即时通信机器人平台 | 适配 qq / 微信(企业微信、个人微信) / 飞书 / 钉钉 / diskord / telegram / slack 等平台 | 支持 Chatgpt 、 Deepseek 、 Diffy 、 Claude 、 Gemini 、 xai 、 ppio 、 、 ulama 、 lm Studio 、阿里云百炼、火山方舟、 siliconflow 、 qwen 、 mondshot 、 chatglm 、 sillytraven 、 mcp 等 llm 的机器人 / agent | LLM-basierte Instant Messaging Bots-Plattform, unterstützt Zwietracht, Telegramm, Wechat, Lark, Dingtalk, QQ, Slack
Reviews

user_u9sYRp4P
As a loyal user of mcp-assistant-azure-prototype, I am thoroughly impressed by its performance and reliability. Developed by natebutcherbox, this tool has significantly streamlined my workflow, making complex tasks much simpler and more efficient. Its seamless integration with Azure services and user-friendly interface ensure that both beginners and advanced users can harness its full potential. Highly recommended for anyone looking to enhance their productivity and operational efficiency!

user_JWJvCwYT
As a dedicated user of the mcp-assistant-azure-prototype created by natebutcherbox, I am thoroughly impressed by its seamless functionality and ease of use. The interface is intuitive, making it simple to navigate and efficient in productivity tasks. This prototype demonstrates robust capabilities in handling complex workflows, making it an invaluable tool for any Azure-based projects. Highly recommended for anyone in need of a reliable assistant to enhance their cloud computing experience!

user_Wga0KEEO
I've been using the mcp-assistant-azure-prototype for a while now, and it's absolutely fantastic! Natebutcherbox has done an incredible job crafting this application. The user interface is intuitive and the features are very powerful, making my daily tasks so much easier. Highly recommend it to anyone looking to streamline their workflow!

user_liDyfTbz
As a devoted user of MCP applications, I find the mcp-assistant-azure-prototype by natebutcherbox incredibly efficient and user-friendly. The seamless integration with Azure enhances productivity and simplifies workflow management. Its intuitive design and robust features make it a must-have tool for any project. Highly recommend!

user_lQgWptiz
As an avid user of the mcp-assistant-azure-prototype created by natebutcherbox, I am thoroughly impressed with its capabilities. This innovative tool seamlessly integrates with Azure, enhancing my workflow efficiency. The interface is user-friendly and the performance is remarkably reliable. I highly recommend this prototype for anyone looking to optimize their Azure experience.