MCP cover image
See in Github
2025-04-02

Miroir dehttps: //github.com/nvkanirudh/yt-to-linkedin-mcp-server

0

Github Watches

0

Github Forks

0

Github Stars

YouTube to LinkedIn MCP Server

A Model Context Protocol (MCP) server that automates generating LinkedIn post drafts from YouTube videos. This server provides high-quality, editable content drafts based on YouTube video transcripts.

Features

  • YouTube Transcript Extraction: Extract transcripts from YouTube videos using video URLs
  • Transcript Summarization: Generate concise summaries of video content using OpenAI GPT
  • LinkedIn Post Generation: Create professional LinkedIn post drafts with customizable tone and style
  • Modular API Design: Clean FastAPI implementation with well-defined endpoints
  • Containerized Deployment: Ready for deployment on Smithery

Setup Instructions

Prerequisites

  • Python 3.8+
  • Docker (for containerized deployment)
  • OpenAI API Key
  • YouTube Data API Key (optional, but recommended for better metadata)

Local Development

  1. Clone the repository:

    git clone <repository-url>
    cd yt-to-linkedin
    
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Create a .env file in the project root with your API keys:

    OPENAI_API_KEY=your_openai_api_key
    YOUTUBE_API_KEY=your_youtube_api_key
    
  4. Run the application:

    uvicorn app.main:app --reload
    
  5. Access the API documentation at http://localhost:8000/docs

Docker Deployment

  1. Build the Docker image:

    docker build -t yt-to-linkedin-mcp .
    
  2. Run the container:

    docker run -p 8000:8000 --env-file .env yt-to-linkedin-mcp
    

Smithery Deployment

  1. Ensure you have the Smithery CLI installed and configured.

  2. Deploy to Smithery:

    smithery deploy
    

API Endpoints

1. Transcript Extraction

Endpoint: /api/v1/transcript
Method: POST
Description: Extract transcript from a YouTube video

Request Body:

{
  "youtube_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "language": "en",
  "youtube_api_key": "your_youtube_api_key"  // Optional, provide your own YouTube API key
}

Response:

{
  "video_id": "VIDEO_ID",
  "video_title": "Video Title",
  "transcript": "Full transcript text...",
  "language": "en",
  "duration_seconds": 600,
  "channel_name": "Channel Name",
  "error": null
}

2. Transcript Summarization

Endpoint: /api/v1/summarize
Method: POST
Description: Generate a summary from a video transcript

Request Body:

{
  "transcript": "Video transcript text...",
  "video_title": "Video Title",
  "tone": "professional",
  "audience": "general",
  "max_length": 250,
  "min_length": 150,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "summary": "Generated summary text...",
  "word_count": 200,
  "key_points": [
    "Key point 1",
    "Key point 2",
    "Key point 3"
  ]
}

3. LinkedIn Post Generation

Endpoint: /api/v1/generate-post
Method: POST
Description: Generate a LinkedIn post from a video summary

Request Body:

{
  "summary": "Video summary text...",
  "video_title": "Video Title",
  "video_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "speaker_name": "Speaker Name",
  "hashtags": ["ai", "machinelearning"],
  "tone": "professional",
  "voice": "first_person",
  "audience": "technical",
  "include_call_to_action": true,
  "max_length": 1200,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "post_content": "Generated LinkedIn post content...",
  "character_count": 800,
  "estimated_read_time": "About 1 minute",
  "hashtags_used": ["#ai", "#machinelearning"]
}

4. Output Formatting

Endpoint: /api/v1/output
Method: POST
Description: Format the LinkedIn post for output

Request Body:

{
  "post_content": "LinkedIn post content...",
  "format": "json"
}

Response:

{
  "content": {
    "post_content": "LinkedIn post content...",
    "character_count": 800
  },
  "format": "json"
}

Environment Variables

Variable Description Required
OPENAI_API_KEY OpenAI API key for summarization and post generation No (can be provided in requests)
YOUTUBE_API_KEY YouTube Data API key for fetching video metadata No (can be provided in requests)
PORT Port to run the server on (default: 8000) No

Note: While environment variables for API keys are optional (as they can be provided in each request), it's recommended to set them for local development and testing. When deploying to Smithery, users will need to provide their own API keys in the requests.

License

MIT

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • ravitemer
  • Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)

  • jae-jae
  • MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.

  • patruff
  • Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle

  • pontusab
  • La communauté du curseur et de la planche à voile, recherchez des règles et des MCP

  • n8n-io
  • Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.

    Reviews

    4 (1)
    Avatar
    user_L2KwppDQ
    2025-04-17

    I've been using the NvkAnirudh_YT-to-LinkedIn-MCP-Server for a while now, and it has significantly streamlined my social media strategy. The seamless integration between YouTube and LinkedIn is impressive, and the automated features save a lot of time. Kudos to MCP-Mirror for developing such a user-friendly and efficient tool! Highly recommend checking it out on GitHub.