MCP cover image
See in Github
2024-12-26

Miroir dehttps: //github.com/ckreiling/mcp-server-docker

0

Github Watches

1

Github Forks

1

Github Stars

🐋 Docker MCP server

An MCP server for managing Docker with natural language!

🪩 What can it do?

  • 🚀 Compose containers with natural language
  • 🔍 Introspect & debug running containers
  • 📀 Manage persistent data with Docker volumes

❓ Who is this for?

  • Server administrators: connect to remote Docker engines for e.g. managing a public-facing website.
  • Tinkerers: spin up containers locally, without running a single command yourself.

🏎️ Quickstart

Prerequisites

  • Ensure you have uv installed (see the docs for details)
  • Clone this repository

Install

Claude Desktop

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json

On Windows: %APPDATA%/Claude/claude_desktop_config.json

Development/Unpublished Servers Configuration
"mcpServers": {
  "mcp-server-docker": {
    "command": "uv",
    "args": [
      "--directory",
      "/path/to/repo",
      "run",
      "mcp-server-docker"
    ]
  }
}

📝 Prompts

🎻 docker_compose

Use natural language to compose containers.

Provide a Project Name, and a description of desired containers, and let the LLM do the rest.

This prompt instructs the LLM to enter a plan+apply loop. Your interaction with the LLM will involve the following steps:

  1. You give the LLM instructions for which containers to bring up
  2. The LLM calculates a concise natural language plan and presents it to you
  3. You either:
    • Apply the plan
    • Provide the LLM feedback, and the LLM recalculates the plan

Examples

  • name: nginx, containers: "deploy an nginx container exposing it on port 9000"
  • name: wordpress, containers: "deploy a WordPress container and a supporting MySQL container, exposing Wordpress on port 9000"

Resuming a Project

When starting a new chat with this prompt, the LLM will receive the status of any containers, volumes, and networks created with the given project name.

This is mainly useful for cleaning up, in-case you lose a chat that was responsible for many containers.

📔 Resources

The server implements a couple resources for every container:

  • Stats: CPU, memory, etc. for a container
  • Logs: tail some logs from a container

🔨 Tools

Containers

  • list_containers
  • create_container
  • run_container
  • recreate_container
  • start_container
  • fetch_container_logs
  • stop_container
  • remove_container

Images

  • list_images
  • pull_image
  • push_image
  • build_image
  • remove_image

Networks

  • list_networks
  • create_network
  • remove_network

Volumes

  • list_volumes
  • create_volume
  • remove_volume

🚧 Disclaimers

Sensitive Data

DO NOT CONFIGURE CONTAINERS WITH SENSITIVE DATA. This includes API keys, database passwords, etc.

Any sensitive data exchanged with the LLM is inherently compromised, unless the LLM is running on your local machine.

If you are interested in securely passing secrets to containers, file an issue on this repository with your use-case.

Reviewing Created Containers

Be careful to review the containers that the LLM creates. Docker is not a secure sandbox, and therefore the MCP server can potentially impact the host machine through Docker.

For safety reasons, this MCP server doesn't support sensitive Docker options like --privileged or --cap-add/--cap-drop. If these features are of interest to you, file an issue on this repository with your use-case.

🛠️ Configuration

This server uses the Python Docker SDK's from_env method. For configuration details, see the documentation.

💻 Development

Prefer using Devbox to configure your development environment.

See the devbox.json for helpful development commands.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Andris Teikmanis
  • Latvian GPT assistant for developing GPT applications

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • https://cantaspinar.com
  • Summarizes videos and answers related questions.

  • Jan Meindl
  • Builds new GPTs

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • n8n-io
  • Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.

    Reviews

    1 (1)
    Avatar
    user_PiTOCQrc
    2025-04-15

    The Wikipedia Summarizer MCP Server by codingaslu is an incredible tool for quickly extracting concise summaries from Wikipedia articles. It is easy to use and extremely efficient, making my research process much smoother. Highly recommend this to anyone in need of a reliable summarizing server. Check it out here: https://mcp.so/server/Streamlit-as-an-MCP-Host/codingaslu.