I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

azure-log-analytique-MCP
MCP Server pour interroger l'analyse des journaux Azure en utilisant le langage naturel
3 years
Works with Finder
1
Github Watches
0
Github Forks
1
Github Stars
Azure Log Analytics MCP Server
An MCP (Model Context Protocol) server for querying Azure Log Analytics using natural language. This server allows large language models to convert natural language queries into KQL (Kusto Query Language) and execute them against Azure Log Analytics.
Features
- Convert natural language queries to KQL using Claude AI
- Execute KQL queries against Azure Log Analytics
- Format results for easy consumption by LLMs
- CLI mode for direct interactions and MCP server mode for LLM integrations
Prerequisites
- Node.js 18.x or higher
- An Azure subscription with Log Analytics workspace
- An Anthropic API key for Claude AI
- Azure CLI configured with appropriate credentials
Installation
# Clone the repository
git clone https://github.com/MananShahTR/azure-log-analytics-mcp.git
cd azure-log-analytics-mcp
# Install dependencies
npm install
# Build the project
npm run build
Configuration
The server requires the following environment variables:
-
ANTHROPIC_API_KEY
: Your Anthropic API key for Claude AI
Azure credentials are obtained through Azure CLI credentials. Ensure you're logged in with az login
before running the server.
You'll need to configure the following in the azure-service.ts
file:
-
subscriptionId
: Your Azure subscription ID -
resourceGroup
: The resource group containing your App Insights resource -
appInsightsId
: The name of your Application Insights resource
Usage
CLI Tool
# Run as a CLI tool
ANTHROPIC_API_KEY=your_key_here node build/index.js
MCP Server
# Run as an MCP server
ANTHROPIC_API_KEY=your_key_here node build/mcp-server.js
MCP Settings Configuration
Add the following to your MCP settings configuration file:
{
"mcpServers": {
"azure-log-analytics": {
"command": "node",
"args": ["path/to/azure-log-analytics-mcp/build/mcp-server.js"],
"env": {
"ANTHROPIC_API_KEY": "your_key_here"
}
}
}
}
Tool Usage
Once connected, the MCP server provides the following tool:
-
query_logs
: Query Azure Log Analytics using natural language- Parameters:
-
query
: Natural language query about trace logs (required) -
timeRange
: Optional time range (e.g., "last 24 hours", "past week") -
limit
: Maximum number of results to return
-
- Parameters:
Examples
// Example MCP tool use
use_mcp_tool({
server_name: "azure-log-analytics",
tool_name: "query_logs",
arguments: {
query: "Show me all errors in the authentication service from the last hour",
timeRange: "last hour",
limit: 10
}
});
License
MIT
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Advanced software engineer GPT that excels through nailing the basics.
A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.
Miroir dehttps: //github.com/suhail-ak-s/mcp-typeseense-server
本项目是一个钉钉 MCP (Protocole de connecteur de message) 服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 , 支持员工信息查询和消息发送等功能。
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
Reviews

user_qgjvNzO3
As a dedicated user of azure-log-analytics-mcp, I am genuinely impressed with its capabilities. This tool by MananShahTR has significantly enhanced my log analytics experience on Azure. Its integration is seamless, and the documentation is straightforward, making it easy to get started. The GitHub repository provides all the necessary resources, ensuring a smooth setup. Overall, it's a robust solution for managing and analyzing logs effectively. Highly recommended!