I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

mlflowmcpServer
serveur MCP pour mlflow
3 years
Works with Finder
1
Github Watches
2
Github Forks
3
Github Stars
MLflow MCP Server: Natural Language Interface for MLflow
This project provides a natural language interface to MLflow via the Model Context Protocol (MCP). It allows you to query your MLflow tracking server using plain English, making it easier to manage and explore your machine learning experiments and models.
Overview
MLflow MCP Agent consists of two main components:
-
MLflow MCP Server (
mlflow_server.py
): Connects to your MLflow tracking server and exposes MLflow functionality through the Model Context Protocol (MCP). -
MLflow MCP Client (
mlflow_client.py
): Provides a natural language interface to interact with the MLflow MCP Server using a conversational AI assistant.
Features
- Natural Language Queries: Ask questions about your MLflow tracking server in plain English
- Model Registry Exploration: Get information about your registered models
- Experiment Tracking: List and explore your experiments and runs
- System Information: Get status and metadata about your MLflow environment
Prerequisites
- Python 3.8+
- MLflow server running (default:
http://localhost:8080
) - OpenAI API key for the LLM
Installation
-
Clone this repository:
git clone https://github.com/iRahulPandey/mlflowMCPServer.git cd mlflowMCPServer
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install the required packages:
pip install mcp[cli] langchain-mcp-adapters langchain-openai langgraph mlflow
-
Set your OpenAI API key:
export OPENAI_API_KEY=your_key_here
-
(Optional) Configure the MLflow tracking server URI:
export MLFLOW_TRACKING_URI=http://localhost:8080
Usage
Starting the MCP Server
First, start the MLflow MCP server:
python mlflow_server.py
The server connects to your MLflow tracking server and exposes MLflow functionality via MCP.
Making Queries
Once the server is running, you can make natural language queries using the client:
python mlflow_client.py "What models do I have registered in MLflow?"
Example Queries:
- "Show me all registered models in MLflow"
- "List all my experiments"
- "Get details for the model named 'iris-classifier'"
- "What's the status of my MLflow server?"
Configuration
You can customize the behavior using environment variables:
-
MLFLOW_TRACKING_URI
: URI of your MLflow tracking server (default:http://localhost:8080
) -
OPENAI_API_KEY
: Your OpenAI API key -
MODEL_NAME
: The OpenAI model to use (default:gpt-3.5-turbo-0125
) -
MLFLOW_SERVER_SCRIPT
: Path to the MLflow MCP server script (default:mlflow_server.py
) -
LOG_LEVEL
: Logging level (default:INFO
)
MLflow MCP Server (mlflow_server.py
)
The server connects to your MLflow tracking server and exposes the following tools via MCP:
-
list_models
: Lists all registered models in the MLflow model registry -
list_experiments
: Lists all experiments in the MLflow tracking server -
get_model_details
: Gets detailed information about a specific registered model -
get_system_info
: Gets information about the MLflow tracking server and system
Limitations
- Currently only supports a subset of MLflow functionality
- The client requires internet access to use OpenAI models
- Error handling may be limited for complex MLflow operations
Future Improvements
- Add support for MLflow model predictions
- Improve the natural language understanding for more complex queries
- Add visualization capabilities for metrics and parameters
- Support for more MLflow operations like run management and artifact handling
Acknowledgments
- Model Context Protocol (MCP): For the protocol specification
- LangChain: For the agent framework
- MLflow: For the tracking and model registry functionality
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Advanced software engineer GPT that excels through nailing the basics.
Japanese education, creating tailored learning experiences.
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.
Miroir dehttps: //github.com/suhail-ak-s/mcp-typeseense-server
本项目是一个钉钉 MCP (Protocole de connecteur de message) 服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 , 支持员工信息查询和消息发送等功能。
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
Reviews

user_1WAB33yV
As a dedicated user of MCP applications, I highly recommend the mlflowMCPServer by iRahulPandey. This server seamlessly integrates with MLflow, enhancing my machine learning workflows. It’s efficient, user-friendly, and has significantly streamlined my model management processes. Check it out at https://github.com/iRahulPandey/mlflowMCPServer!