MCP cover image
See in Github
2025-04-07

Un microservice de compression d'image haute performance basé sur MCP (Protocole de contexte modal)

0

Github Watches

1

Github Forks

7

Github Stars

mcp-image-compression

Project Overview

mcp-image-compression is a high-performance image compression microservice based on MCP (Modal Context Protocol) architecture. This service focuses on providing fast and high-quality image compression capabilities to help developers optimize image resources for websites and applications, improving loading speed and user experience.

Features

  • Multi-format support: Compress mainstream image formats including JPEG, PNG, WebP, AVIF
  • Offline Usage: No need to connect to the internet to use
  • Smart compression: Automatically select optimal compression parameters based on image content
  • Batch processing: Support parallel compression of multiple images for improved efficiency
  • Quality control: Customizable compression quality to balance file size and visual quality

TOOLS

  1. image_compression
    • Image compression
    • Inputs:
      • urls (strings): URLs of images to compress
      • quality (int): Quality of compression (0-100)
      • format (string): Format of compressed image (e.g. "jpeg", "png", "webp", "avif")
    • Returns: Compressed images url

Setup

NPX

{
  "mcpServers": {
    "Image compression": {
      "command": "npx",
      "args": [
        "-y",
        "@inhiblab-core/mcp-image-compression"
      ],
      "env": {
        "IMAGE_COMPRESSION_DOWNLOAD_DIR": "<YOUR_DIR>"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Build

docker build -t mcp-image-compression .

License

This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • ravitemer
  • Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)

    Reviews

    1 (1)
    Avatar
    user_R56rEQ2c
    2025-04-17

    I've been using mcp-image-compression by InhiblabCore for a while now, and I'm genuinely impressed! This tool significantly reduces image sizes without compromising on quality, making web development and storage management a breeze. Highly recommend checking it out on GitHub: https://github.com/InhiblabCore/mcp-image-compression. Great job, InhiblabCore!