I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Insightflow
InsightFlow: un servidor de panel de análisis de análisis en tiempo real con una arquitectura MCP (protocolo de control de mensajes) que se integra con servicios de IA como Claude o Cursor. Esta solución permite el análisis de datos en tiempo real con capacidades de consulta de lenguaje natural.
1
Github Watches
1
Github Forks
2
Github Stars
InsightFlow
InsightFlow is an advanced analytics platform that combines real-time data processing with AI-powered insights using the Model Context Protocol (MCP). It provides seamless integration with Claude AI for intelligent data analysis and decision support.
🚀 Features
- MCP Integration: Full support for Model Context Protocol, enabling advanced AI capabilities
- Real-time Analytics: Process and analyze data streams in real-time
- AI-Powered Insights: Leverage Claude AI for intelligent data interpretation
- Flexible Data Processing: Support for multiple data sources and formats
- RESTful & WebSocket APIs: Comprehensive API support for various integration needs
🛠️ Technology Stack
- Backend: Python 3.9+, FastAPI
- AI Integration: Anthropic Claude API
- Data Processing: Pandas, NumPy
- Database: SQLAlchemy (supports multiple databases)
- API: REST + WebSocket
- Protocol: Model Context Protocol (MCP)
📋 Prerequisites
- Python 3.9 or higher
- Anthropic API key
- Redis (for caching and message queuing)
🔧 Installation
- Clone the repository:
git clone https://github.com/yourusername/insightflow.git
cd insightflow
- Create and activate virtual environment:
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
- Configure environment:
cp config/config.example.yaml config/config.yaml
# Edit config.yaml with your settings
- Set up environment variables:
cp .env.example .env
# Edit .env with your credentials
🚀 Quick Start
Running Locally
- Start the server:
python app/main.py
- Access the API documentation:
http://localhost:8000/docs
📚 API Documentation
REST API Endpoints
-
GET /tools
- List available MCP tools -
POST /tool/{tool_name}
- Execute specific tool -
WS /ws
- WebSocket endpoint for real-time communication
MCP Tools
-
Data Analysis
- Analyze datasets with configurable metrics
- Generate statistical insights
- Support for time-series analysis
-
Query Data
- Flexible data querying capabilities
- Filter and aggregate data
- Export results in multiple formats
-
Generate Insight
- AI-powered data interpretation
- Trend identification
- Anomaly detection
🔧 Configuration
The system can be configured through config.yaml
or environment variables:
server:
host: "0.0.0.0"
port: 8000
debug: false
mcp:
enabled: true
websocket_path: "/ws"
max_connections: 100
ai:
model_name: "claude-2"
temperature: 0.7
max_tokens: 2000
🔍 Development
Project Structure
insightflow/
├── app/
│ ├── main.py # Application entry point
│ ├── config.py # Configuration management
│ ├── core/ # Core MCP and server logic
│ ├── data/ # Data processing modules
│ ├── analytics/ # Analytics engine
│ ├── ai/ # AI integration
│ ├── api/ # API endpoints
│ └── models/ # Data models
└── requirements.txt # Python dependencies
Running Tests
pytest tests/
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/AmazingFeature
) - Commit your changes (
git commit -m 'Add some AmazingFeature'
) - Push to the branch (
git push origin feature/AmazingFeature
) - Open a Pull Request
📄 License
This project is licensed under the MIT License - see the LICENSE file for details.
🤝 Support
For support and questions, please open an issue in the GitHub repository or contact the maintainers.
🙏 Acknowledgments
- Anthropic for Claude AI integration
- Model Context Protocol community
- All contributors and users of InsightFlow
Made with ❤️ by the Ilias RAFIK ;
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Espejo dehttps: //github.com/agentience/practices_mcp_server
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Reviews

user_6glcg9rx
InsightFlow is a fantastic tool developed by ilissrk, providing tremendous value for streamlined data analysis! This GitHub-hosted project is incredibly user-friendly, making it perfect for both beginners and experts. The intuitive interface and powerful features make my workflow seamless and efficient. Highly recommended for anyone interested in insightful data visualization and analysis!