Confidential guide on numerology and astrology, based of GG33 Public information

maître_mcp_server
Serveur MCP Program (MCP) Programme de contrôle Master (MCP) - permettant aux modèles d'IA d'interagir avec votre système
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
AI Master Control Program (MCP) Server
The AI MCP Server enables AI models, including locally hosted models with Ollama and Claude Desktop, to interact with your computer system. It acts as a bridge that allows AI models to:
- Execute system commands
- Create, read, update, and delete files
- Control other programs
- Communicate with each other
Architecture
The system consists of:
- MCP Server: Central server that processes requests from AI models
- Client Library: Enables easy integration with AI models
- Model Connectors: Interfaces with various AI model backends (Ollama, Claude Desktop, etc.)
- Task Execution Engine: Performs system operations and program control
Installation
Prerequisites
- Python 3.8+
- Ollama (optional, for local model hosting)
- Claude Desktop (recommended default model)
Automated Installation
For quick and easy installation, use the provided installation script:
# Clone the repository
git clone https://github.com/GrizzFuOnYou/master_mcp_server.git
cd master_mcp_server
# Run the installation script
python install.py
The installation script will:
- Verify Python version compatibility
- Install all dependencies
- Create a directory structure
- Configure environment variables
- Create platform-specific startup scripts
- Set up Claude Desktop as the default AI model
Manual Setup
If you prefer manual installation:
-
Clone the repository:
git clone https://github.com/GrizzFuOnYou/master_mcp_server.git cd master_mcp_server
-
Install dependencies:
pip install -r requirements.txt
-
Configure environment variables:
cp .env.example .env # Edit .env with your preferred settings
Usage
Starting the Server
Using Startup Script (Recommended)
After installation:
-
Windows: Run
start_mcp_server.bat
-
Linux/Mac: Run
./start_mcp_server.sh
Manual Start
Run the MCP server:
python startup.py
By default, the server will listen on 0.0.0.0:8000
.
Connecting AI Models
Claude Desktop (Default)
Claude Desktop is configured as the default model. To use it:
- Make sure Claude Desktop is running on your system
- The server will automatically attempt to connect on startup
- Claude Desktop should be available at the default location:
http://localhost:5000/api
If you need to manually connect:
from mcp_client import MCPClient
# Initialize client
client = MCPClient("http://localhost:8000", "your-secret-api-key")
# Connect to Claude Desktop
result = client.connect_model("claude-desktop", "claude", {"api_url": "http://localhost:5000/api"})
print(f"Connection result: {result}")
Claude Desktop Connection JSON
If you need to manually configure Claude Desktop integration, use the following JSON configuration:
{
"model_id": "claude-desktop",
"model_type": "claude",
"config": {
"api_url": "http://localhost:5000/api",
"temperature": 0.7,
"max_tokens": 1000
}
}
Ollama Models
To connect to an Ollama model:
from mcp_client import MCPClient
# Initialize client
client = MCPClient("http://localhost:8000", "your-secret-api-key")
# Connect to an Ollama model
result = client.connect_model("llama2", "ollama", {"host": "http://localhost:11434"})
print(f"Connection result: {result}")
Executing System Operations
Once connected, AI models can perform various system operations:
# Execute a command
result = client.execute_system_command("claude-desktop", "echo", ["Hello, World!"])
# Write a file
result = client.write_file("claude-desktop", "test.txt", "This is a test file created by Claude!")
# Read a file
result = client.read_file("claude-desktop", "test.txt")
# Start a program
result = client.start_program("claude-desktop", "notepad.exe")
# Stop a program
result = client.stop_program("claude-desktop", pid)
# Query the AI model
result = client.query_model("claude-desktop", "claude-desktop", "What is the capital of France?")
API Reference
Server Endpoints
Endpoint | Method | Description |
---|---|---|
/connect_model |
POST | Connect to an AI model |
/disconnect_model/{model_id} |
POST | Disconnect from an AI model |
/list_models |
GET | List all connected models |
/execute_task |
POST | Execute a task requested by an AI model |
/task_status/{task_id} |
GET | Get the status of a task |
Client Methods
Method | Description |
---|---|
connect_model(model_id, model_type, config) |
Connect to an AI model |
disconnect_model(model_id) |
Disconnect from an AI model |
list_models() |
List all connected models |
execute_system_command(model_id, command, args, working_dir, timeout) |
Execute a system command |
execute_file_operation(model_id, operation, path, content) |
Execute a file operation |
control_program(model_id, action, program_path, args, pid) |
Control a program |
query_model(model_id, target_model, prompt) |
Query an AI model |
Model Configuration
Claude Desktop Configuration
To connect to Claude Desktop, use the following configuration:
{
"api_url": "http://localhost:5000/api",
"temperature": 0.7,
"max_tokens": 1000
}
Ollama Configuration
To connect to an Ollama model, use the following configuration:
{
"host": "http://localhost:11434"
}
Security Considerations
IMPORTANT: This server grants AI models significant access to your system. Use with caution.
Security measures implemented:
- API key authentication
- Logging of all operations
- Configurable permissions (coming soon)
- Rate limiting (coming soon)
Troubleshooting
Claude Desktop Connection Issues
If you encounter issues connecting to Claude Desktop:
- Ensure Claude Desktop is running
- Verify the API URL (default:
http://localhost:5000/api
) - Check the logs for specific error messages
- Restart Claude Desktop and try again
Ollama Connection Issues
If you encounter issues connecting to Ollama:
- Ensure Ollama is running (
ollama serve
) - Verify the model exists (
ollama list
) - Check the API URL (default:
http://localhost:11434
) - Try pulling the model again (
ollama pull modelname
)
Extension Points
The MCP server can be extended to support:
- Additional AI model backends
- More sophisticated program control
- GUI interaction capabilities
- Web browsing capabilities
- Network operation capabilities
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.
Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)
Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
Serveurs MCP géniaux - une liste organisée de serveurs de protocole de contexte de modèle
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Activer les clients adjoints AI comme Cursor, Windsurf et Claude Desktop pour contrôler le moteur Unreal à travers le langage naturel à l'aide du Protocole de contexte modèle (MCP).
Reviews

user_u0VyN3qN
I've been using master_mcp_server by GrizzFuOnYou, and it's simply outstanding. It provides seamless integration with my applications and the setup is remarkably intuitive. The detailed documentation on the GitHub link (https://github.com/GrizzFuOnYou/master_mcp_server) was very helpful, ensuring a smooth implementation. Truly a must-have for any MCP enthusiast!