Cover image
Try Now
2025-03-17

Un serveur MCP pour étendre le contexte des agents. Utile lors du codage de grandes fonctionnalités ou du codage d'ambiance et doit être stocké / rappeler des progrès, des moments ou des changements clés ou tout ce qui mérite d'être rappelé. Demandez simplement à l'agent de stocker des souvenirs et de rappeler quand vous le souhaitez.

3 years

Works with Finder

1

Github Watches

1

Github Forks

5

Github Stars

Simple Memory Extension MCP Server

An MCP server to extend the context window / memory of agents. Useful when coding big features or vibe coding and need to store/recall progress, key moments or changes or anything worth remembering. Simply ask the agent to store memories and recall whenever you need or ask the agent to fully manage its memory (through cursor rules for example) however it sees fit.

Usage

Starting the Server

npm install
npm start

Available Tools

Context Item Management

  • store_context_item - Store a value with key in namespace
  • retrieve_context_item_by_key - Get value by key
  • delete_context_item - Delete key-value pair

Namespace Management

  • create_namespace - Create new namespace
  • delete_namespace - Delete namespace and all contents
  • list_namespaces - List all namespaces
  • list_context_item_keys - List keys in a namespace

Semantic Search

  • retrieve_context_items_by_semantic_search - Find items by meaning

Semantic Search Implementation

  1. Query converted to vector using E5 model
  2. Text automatically split into chunks for better matching
  3. Cosine similarity calculated between query and stored chunks
  4. Results filtered by threshold and sorted by similarity
  5. Top matches returned with full item values

Development

# Dev server
npm run dev

# Format code
npm run format

.env

# Path to SQLite database file
DB_PATH=./data/context.db

PORT=3000

# Use HTTP SSE or Stdio
USE_HTTP_SSE=true

# Logging Configuration: debug, info, warn, error
LOG_LEVEL=info

Semantic Search

This project includes semantic search capabilities using the E5 embedding model from Hugging Face. This allows you to find context items based on their meaning rather than just exact key matches.

Setup

The semantic search feature requires Python dependencies, but these should be automatically installed when you run: npm run start

Embedding Model

We use the intfloat/multilingual-e5-large-instruct

Notes

Developed mostly while vibe coding, so don't expect much :D. But it works, and I found it helpful so w/e. Feel free to contribute or suggest improvements.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • ANGEL LEON
  • A world class elite tech co-founder entrepreneur, expert in software development, entrepreneurship, marketing, coaching style leadership and aligned with ambition for excellence, global market penetration and worldy perspectives.

  • INFOLAB OPERATIONS 2
  • A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!

  • Yasir Eryilmaz
  • AI scriptwriting assistant for short, engaging video content.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • huahuayu
  • Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.

  • deemkeen
  • Contrôlez votre MBOT2 avec un combo d'alimentation: MQTT + MCP + LLM

  • zhaoyunxing92
  • 本项目是一个钉钉 MCP (Protocole de connecteur de message) 服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 , 支持员工信息查询和消息发送等功能。

  • pontusab
  • La communauté du curseur et de la planche à voile, recherchez des règles et des MCP

    Reviews

    5 (1)
    Avatar
    user_HcRIOlv4
    2025-04-16

    Simple-Memory-Extension-MCP-Server by gmacev is a fantastic tool for enhancing memory management in MCP applications. It's intuitive and easy to integrate, making it an essential addition for developers looking to optimize their server performance. Highly recommend checking it out at https://github.com/gmacev/Simple-Memory-Extension-MCP-Server!