Cover image
Try Now
2025-04-03

Un serveur de protocole de contexte modèle (MCP) qui offre un accès sécurisé et en lecture seule aux ensembles de données BigQuery. Permet aux modèles de langue importants (LLMS) d'interroger et d'analyser en toute sécurité les données via une interface standardisée.

3 years

Works with Finder

2

Github Watches

14

Github Forks

47

Github Stars

BigQuery MCP Server

smithery badge

BigQuery MCP Server Logo

What is this? 🤔

This is a server that lets your LLMs (like Claude) talk directly to your BigQuery data! Think of it as a friendly translator that sits between your AI assistant and your database, making sure they can chat securely and efficiently.

Quick Example

You: "What were our top 10 customers last month?"
Claude: *queries your BigQuery database and gives you the answer in plain English*

No more writing SQL queries by hand - just chat naturally with your data!

How Does It Work? 🛠️

This server uses the Model Context Protocol (MCP), which is like a universal translator for AI-database communication. While MCP is designed to work with any AI model, right now it's available as a developer preview in Claude Desktop.

Here's all you need to do:

  1. Set up authentication (see below)
  2. Add your project details to Claude Desktop's config file
  3. Start chatting with your BigQuery data naturally!

What Can It Do? 📊

  • Run SQL queries by just asking questions in plain English
  • Access both tables and materialized views in your datasets
  • Explore dataset schemas with clear labeling of resource types (tables vs views)
  • Analyze data within safe limits (1GB query limit by default)
  • Keep your data secure (read-only access)

Quick Start 🚀

Prerequisites

  • Node.js 14 or higher
  • Google Cloud project with BigQuery enabled
  • Either Google Cloud CLI installed or a service account key file
  • Claude Desktop (currently the only supported LLM interface)

Option 1: Quick Install via Smithery (Recommended)

To install BigQuery MCP Server for Claude Desktop automatically via Smithery, run this command in your terminal:

npx @smithery/cli install @ergut/mcp-bigquery-server --client claude

The installer will prompt you for:

  • Your Google Cloud project ID
  • BigQuery location (defaults to us-central1)

Once configured, Smithery will automatically update your Claude Desktop configuration and restart the application.

Option 2: Manual Setup

If you prefer manual configuration or need more control:

  1. Authenticate with Google Cloud (choose one method):

    • Using Google Cloud CLI (great for development):
      gcloud auth application-default login
      
    • Using a service account (recommended for production):
      # Save your service account key file and use --key-file parameter
      # Remember to keep your service account key file secure and never commit it to version control
      
  2. Add to your Claude Desktop config Add this to your claude_desktop_config.json:

    • Basic configuration:

      {
        "mcpServers": {
          "bigquery": {
            "command": "npx",
            "args": [
              "-y",
              "@ergut/mcp-bigquery-server",
              "--project-id",
              "your-project-id",
              "--location",
              "us-central1"
            ]
          }
        }
      }
      
    • With service account:

      {
        "mcpServers": {
          "bigquery": {
            "command": "npx",
            "args": [
              "-y",
              "@ergut/mcp-bigquery-server",
              "--project-id",
              "your-project-id",
              "--location",
              "us-central1",
              "--key-file",
              "/path/to/service-account-key.json"
            ]
          }
        }
      }
      
  3. Start chatting! Open Claude Desktop and start asking questions about your data.

Command Line Arguments

The server accepts the following arguments:

  • --project-id: (Required) Your Google Cloud project ID
  • --location: (Optional) BigQuery location, defaults to 'us-central1'
  • --key-file: (Optional) Path to service account key JSON file

Example using service account:

npx @ergut/mcp-bigquery-server --project-id your-project-id --location europe-west1 --key-file /path/to/key.json

Permissions Needed

You'll need one of these:

  • roles/bigquery.user (recommended)
  • OR both:
    • roles/bigquery.dataViewer
    • roles/bigquery.jobUser

Developer Setup (Optional) 🔧

Want to customize or contribute? Here's how to set it up locally:

# Clone and install
git clone https://github.com/ergut/mcp-bigquery-server
cd mcp-bigquery-server
npm install

# Build
npm run build

Then update your Claude Desktop config to point to your local build:

{
  "mcpServers": {
    "bigquery": {
      "command": "node",
      "args": [
        "/path/to/your/clone/mcp-bigquery-server/dist/index.js",
        "--project-id",
        "your-project-id",
        "--location",
        "us-central1",
        "--key-file",
        "/path/to/service-account-key.json"
      ]
    }
  }
}

Current Limitations ⚠️

  • MCP support is currently only available in Claude Desktop (developer preview)
  • Connections are limited to local MCP servers running on the same machine
  • Queries are read-only with a 1GB processing limit
  • While both tables and views are supported, some complex view types might have limitations

Support & Resources 💬

License 📝

MIT License - See LICENSE file for details.

Author ✍️

Salih Ergüt

Sponsorship

This project is proudly sponsored by:

Version History 📋

See CHANGELOG.md for updates and version history.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • pontusab
  • La communauté du curseur et de la planche à voile, recherchez des règles et des MCP

  • jae-jae
  • MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.

  • ravitemer
  • Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)

  • patruff
  • Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle

  • av
  • Exécutez sans effort LLM Backends, API, Frontends et Services avec une seule commande.

  • appcypher
  • Serveurs MCP géniaux - une liste organisée de serveurs de protocole de contexte de modèle

  • chongdashu
  • Activer les clients adjoints AI comme Cursor, Windsurf et Claude Desktop pour contrôler le moteur Unreal à travers le langage naturel à l'aide du Protocole de contexte modèle (MCP).

  • wgpsec
  • 一款基于各大企业信息 API 的工具 , 解决在遇到的各种针对国内企业信息收集难题。一键收集控股公司 ICP 备案、 APP 、小程序、微信公众号等信息聚合导出。支持 MCP 接入

    Reviews

    5 (1)
    Avatar
    user_QZIP2Nnl
    2025-04-17

    As a dedicated user of mcp applications, I must say that the mcp-bigquery-server by ergut is incredibly impressive. This tool greatly simplifies querying BigQuery databases and makes data handling much more efficient. The seamless integration and straightforward setup make it a must-have for any data professional. Highly recommended!