Confidential guide on numerology and astrology, based of GG33 Public information

MCP
Une caisse pour fabriquer des programmes compatibles MCP (Model Context Protocol) avec Rust
3 years
Works with Finder
1
Github Watches
8
Github Forks
15
Github Stars
mcp.rs
A Rust implementation of the Model Context Protocol (MCP), providing a standardized way for AI models to access external context and resources.
Quickstart
Client
# List resources
cargo run --bin client list-resources
# Read a specific file
cargo run --bin client read-resource -u "file:///path/to/file"
# Use a prompt
cargo run --bin client get-prompt -n "code_review" -a '{"code": "fn main() {}", "language": "rust"}'
# Call a tool
cargo run --bin client -- --server "http://127.0.0.1:3000" call-tool --name "file_system" --args '{\"operation\": \"read_file\", \"path\": \"Config.toml\"}'
# Set log level
cargo run --bin client set-log-level -l "debug"
# Use SSE transport
cargo run --bin client -t sse -s http://localhost:3000 list-resources
Server
# Run with test config
cargo run --bin server -- --config "../servers/test.json"
Overview
mcp.rs is a high-performance, type-safe Rust implementation of the Model Context Protocol, designed to enable seamless communication between AI applications and their integrations. It provides a robust foundation for building MCP servers that can expose various types of resources (files, data, APIs) to AI models.
Features
-
Multiple Transport Types:
- Standard Input/Output (stdio) transport for CLI tools
- HTTP with Server-Sent Events (SSE) for web integrations
- Extensible transport system for custom implementations
-
Resource Management:
- File system resource provider
- Resource templating support
- Real-time resource updates
- Resource subscription capabilities
-
Flexible Configuration:
- YAML/JSON configuration files
- Environment variable overrides
- Command-line arguments
- Sensible defaults
-
Security:
- Built-in access controls
- Path traversal protection
- Rate limiting
- CORS support
Installation
Add mcp.rs to your project's Cargo.toml
:
[dependencies]
mcp = "0.1.0"
Quick Start
- Create a basic MCP server:
use mcp::{McpServer, ServerConfig};
#[tokio::main]
async fn main() -> Result<(), mcp::error::McpError> {
// Create server with default configuration
let server = McpServer::new(ServerConfig::default());
// Run the server
server.run().await
}
- Configure via command line:
# Run with stdio transport
mcp-server -t stdio
# Run with SSE transport on port 3000
mcp-server -t sse -p 3000
# Enable debug logging
mcp-server -l debug
- Or use a configuration file:
server:
name: "my-mcp-server"
version: "1.0.0"
transport: sse
port: 3000
resources:
root_path: "./resources"
allowed_schemes:
- file
max_file_size: 10485760
security:
enable_auth: false
allowed_origins:
- "*"
logging:
level: "info"
format: "pretty"
Architecture
mcp.rs follows a modular architecture:
- Transport Layer: Handles communication between clients and servers
- Protocol Layer: Implements the MCP message format and routing
- Resource Layer: Manages access to external resources
- Configuration: Handles server settings and capabilities
Configuration Options
Option | Description | Default |
---|---|---|
transport |
Transport type (stdio, sse) | stdio |
port |
Server port for network transports | 3000 |
log_level |
Logging level | info |
resource_root |
Root directory for resources | ./resources |
API Reference
For detailed API documentation, run:
cargo doc --open
Examples (TODO)
Check out the /examples
directory for:
- Basic server implementation
- Custom resource provider
- Configuration examples
- Integration patterns
Contributing
Contributions are welcome! Please read our Contributing Guidelines before submitting pull requests.
Development Requirements
- Rust 1.70 or higher
- Cargo
- Optional: Docker for containerized testing
Running Tests
# Run all tests
cargo test
# Run with logging
RUST_LOG=debug cargo test
License
This project is licensed under the MIT License.
Acknowledgments
This implementation is based on the Model Context Protocol specification and inspired by the reference implementation.
Contact
- Issue Tracker: GitHub Issues
- Source Code: GitHub Repository
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
I find academic articles and books for research and literature reviews.
Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.
Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX
MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.
Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)
Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
🧑🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Serveurs MCP géniaux - une liste organisée de serveurs de protocole de contexte de modèle
Reviews

user_nUAgWU7t
As a dedicated user of mcp, I can attest to its remarkable functionality and ease of use. Created by EmilLindfors and hosted on GitHub, this product has significantly improved my workflow. The clear documentation and robust performance make it a standout tool in its category. Highly recommend checking it out!