Confidential guide on numerology and astrology, based of GG33 Public information

RAG-MCP-Pipeline-Forschung
Eine Lernrepository-Erkundung von RAG-Server-Server-Server-Integration (Multi-Cloud-Verarbeitung) mit kostenlosen und Open-Source-Modellen.
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
RAG-MCP Pipeline Research
A comprehensive research project exploring Retrieval-Augmented Generation (RAG) and Multi-Cloud Processing (MCP) server integration using free and open-source models.
Project Overview
This repository serves as a structured learning and research path for understanding how to integrate Large Language Models (LLMs) with external services through MCP servers, with a focus on practical business applications such as accounting software integration (e.g., QuickBooks).
🌟 Key Features
- No paid API keys required - uses free Hugging Face models
- Run everything locally without external dependencies
- Comprehensive step-by-step documentation for beginners
- Practical examples with working code
Research Modules
Module 0: Prerequisites
Establish a solid foundation before diving into specific areas:
- Programming & Tools: Python, Git/GitHub, Docker
- Basic Concepts: Machine learning, RESTful APIs, cloud services
- AI & LLM Foundations: Understanding transformers, RAG, and prompt engineering
- Development environment setup with free models
Module 1: AI Modeling & LLM Integration
- Understanding different LLM architectures and capabilities
- Integration methods with various LLM providers (Hugging Face, open-source models)
- Fine-tuning strategies for domain-specific tasks
- Evaluation metrics and performance optimization
Module 2: Hosting & Deployment Strategies for AI
- Scalable infrastructure for AI applications
- Cost optimization techniques
- Model serving options (serverless, container-based, dedicated instances)
- Monitoring and observability for LLM applications
Module 3: Deep Dive into MCP Servers
- Architecture and components of MCP servers
- Building secure API gateways for external service integration
- Authentication and authorization patterns
- Command execution protocols and standardization
Module 4: API Integration & Command Execution
- Integration with business software APIs (QuickBooks, etc.)
- Data transformation and normalization
- Error handling and resilience strategies
- Testing and validation methodologies
Module 5: RAG (Retrieval Augmented Generation) & Alternative Strategies
- Vector database selection and optimization
- Document processing pipelines
- Hybrid retrieval approaches
- Alternative augmentation strategies for LLMs
Project Goals
- Gain comprehensive understanding of RAG and MCP server concepts
- Build prototype integrations with popular business software
- Develop a framework for AI-powered data entry and processing
- Create documentation and best practices for future implementations
Getting Started
-
Clone this repository to your local machine
git clone https://github.com/your-username/rag-mcp-pipeline-research.git cd rag-mcp-pipeline-research
-
Run the setup script to prepare your environment
# Navigate to the project directory python src/setup_environment.py
-
Activate the virtual environment
# On Windows venv\Scripts\activate # On macOS/Linux source venv/bin/activate
-
Start with Module 0: Prerequisites
-
Progress through each module sequentially
-
Complete the practical exercises in each section
Why Free Models?
This project intentionally uses free, open-source models from Hugging Face instead of commercial APIs like OpenAI for several reasons:
- Accessibility - Anyone can follow along without financial barriers
- Educational Value - Better understanding of how models work internally
- Privacy - All processing happens locally on your machine
- Flexibility - Easier to customize and fine-tune models for specific needs
- Future-Proofing - Skills transfer to any model, not tied to specific providers
For production applications, you may choose to use commercial APIs for better performance, but the concepts learned here apply universally.
License
MIT
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.
Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)
MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.
Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden
Ein KI-Chat-Bot für kleine und mittelgroße Teams, die Modelle wie Deepseek, Open AI, Claude und Gemini unterstützt. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 claude 、 Gemini 等模型。
🔍 Ermöglichen Sie AI -Assistenten, über eine einfache MCP -Schnittstelle auf PYPI -Paketinformationen zu suchen und auf Paketinformationen zuzugreifen.
Reviews

user_CzUsYZ4V
I've been using rag-mcp-pipeline-research by dzikrisyairozi and it's been a game-changer for my projects. The pipeline is robust, easy to implement, and the documentation is very clear. It efficiently handles multi-component processes, making my research workflow seamless. Highly recommend checking it out! https://github.com/dzikrisyairozi/rag-mcp-pipeline-research