Cover image
Try Now
2025-03-03

MCP Server que proporciona una implementación de gráficos de conocimiento con capacidades de búsqueda semántica alimentadas por Qdrant Vector Database

3 years

Works with Finder

1

Github Watches

7

Github Forks

8

Github Stars

MCP Memory Server with Qdrant Persistence

smithery badge

This MCP server provides a knowledge graph implementation with semantic search capabilities powered by Qdrant vector database.

Features

  • Graph-based knowledge representation with entities and relations
  • File-based persistence (memory.json)
  • Semantic search using Qdrant vector database
  • OpenAI embeddings for semantic similarity
  • HTTPS support with reverse proxy compatibility
  • Docker support for easy deployment

Environment Variables

The following environment variables are required:

# OpenAI API key for generating embeddings
OPENAI_API_KEY=your-openai-api-key

# Qdrant server URL (supports both HTTP and HTTPS)
QDRANT_URL=https://your-qdrant-server

# Qdrant API key (if authentication is enabled)
QDRANT_API_KEY=your-qdrant-api-key

# Name of the Qdrant collection to use
QDRANT_COLLECTION_NAME=your-collection-name

Setup

Local Setup

  1. Install dependencies:
npm install
  1. Build the server:
npm run build

Docker Setup

  1. Build the Docker image:
docker build -t mcp-qdrant-memory .
  1. Run the Docker container with required environment variables:
docker run -d \
  -e OPENAI_API_KEY=your-openai-api-key \
  -e QDRANT_URL=http://your-qdrant-server:6333 \
  -e QDRANT_COLLECTION_NAME=your-collection-name \
  -e QDRANT_API_KEY=your-qdrant-api-key \
  --name mcp-qdrant-memory \
  mcp-qdrant-memory

Add to MCP settings:

{
  "mcpServers": {
    "memory": {
      "command": "/bin/zsh",
      "args": ["-c", "cd /path/to/server && node dist/index.js"],
      "env": {
        "OPENAI_API_KEY": "your-openai-api-key",
        "QDRANT_API_KEY": "your-qdrant-api-key",
        "QDRANT_URL": "http://your-qdrant-server:6333",
        "QDRANT_COLLECTION_NAME": "your-collection-name"
      },
      "alwaysAllow": [
        "create_entities",
        "create_relations",
        "add_observations",
        "delete_entities",
        "delete_observations",
        "delete_relations",
        "read_graph",
        "search_similar"
      ]
    }
  }
}

Tools

Entity Management

  • create_entities: Create multiple new entities
  • create_relations: Create relations between entities
  • add_observations: Add observations to entities
  • delete_entities: Delete entities and their relations
  • delete_observations: Delete specific observations
  • delete_relations: Delete specific relations
  • read_graph: Get the full knowledge graph

Semantic Search

  • search_similar: Search for semantically similar entities and relations
    interface SearchParams {
      query: string;     // Search query text
      limit?: number;    // Max results (default: 10)
    }
    

Implementation Details

The server maintains two forms of persistence:

  1. File-based (memory.json):

    • Complete knowledge graph structure
    • Fast access to full graph
    • Used for graph operations
  2. Qdrant Vector DB:

    • Semantic embeddings of entities and relations
    • Enables similarity search
    • Automatically synchronized with file storage

Synchronization

When entities or relations are modified:

  1. Changes are written to memory.json
  2. Embeddings are generated using OpenAI
  3. Vectors are stored in Qdrant
  4. Both storage systems remain consistent

Search Process

When searching:

  1. Query text is converted to embedding
  2. Qdrant performs similarity search
  3. Results include both entities and relations
  4. Results are ranked by semantic similarity

Example Usage

// Create entities
await client.callTool("create_entities", {
  entities: [{
    name: "Project",
    entityType: "Task",
    observations: ["A new development project"]
  }]
});

// Search similar concepts
const results = await client.callTool("search_similar", {
  query: "development tasks",
  limit: 5
});

HTTPS and Reverse Proxy Configuration

The server supports connecting to Qdrant through HTTPS and reverse proxies. This is particularly useful when:

  • Running Qdrant behind a reverse proxy like Nginx or Apache
  • Using self-signed certificates
  • Requiring custom SSL/TLS configurations

Setting up with a Reverse Proxy

  1. Configure your reverse proxy (example using Nginx):
server {
    listen 443 ssl;
    server_name qdrant.yourdomain.com;

    ssl_certificate /path/to/cert.pem;
    ssl_certificate_key /path/to/key.pem;

    location / {
        proxy_pass http://localhost:6333;
        proxy_set_header Host $host;
        proxy_set_header X-Real-IP $remote_addr;
    }
}
  1. Update your environment variables:
QDRANT_URL=https://qdrant.yourdomain.com

Security Considerations

The server implements robust HTTPS handling with:

  • Custom SSL/TLS configuration
  • Proper certificate verification options
  • Connection pooling and keepalive
  • Automatic retry with exponential backoff
  • Configurable timeouts

Troubleshooting HTTPS Connections

If you experience connection issues:

  1. Verify your certificates:
openssl s_client -connect qdrant.yourdomain.com:443
  1. Test direct connectivity:
curl -v https://qdrant.yourdomain.com/collections
  1. Check for any proxy settings:
env | grep -i proxy

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Submit a pull request

License

MIT

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • https://tovuti.be
  • Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven

  • ANGEL LEON
  • A world class elite tech co-founder entrepreneur, expert in software development, entrepreneurship, marketing, coaching style leadership and aligned with ambition for excellence, global market penetration and worldy perspectives.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Gil kaminski
  • Make sure you are post-ready before you post on social media

  • INFOLAB OPERATIONS 2
  • A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • OffchainLabs
  • Implementación de la prueba de estaca Ethereum

  • huahuayu
  • Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.

  • deemkeen
  • Controle su MBOT2 con un combo de potencia: MQTT+MCP+LLM

  • zhaoyunxing92
  • 本项目是一个钉钉 MCP (Protocolo del conector de mensajes )服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 支持员工信息查询和消息发送等功能。 支持员工信息查询和消息发送等功能。

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

    Reviews

    1 (1)
    Avatar
    user_GEv7S6Gl
    2025-04-15

    As a dedicated user of MCP applications, I highly recommend the CCXT MCP Server by MCP-Mirror. This server integrates seamlessly, is reliable, and supports multiple features essential for efficient crypto trading. Its user-friendly interface and comprehensive documentation make it a standout choice. Check it out at https://mcp.so/server/doggybee_mcp-server-ccxt/MCP-Mirror!