MCP cover image
See in Github
2025-03-12

Serveur de protocole de contrôle du modèle (MCP) pour API ASR SCRIBS ELEVENLABS

1

Github Watches

1

Github Forks

1

Github Stars

ElevenLabs Scribe MCP Server

A Model Control Protocol (MCP) server implementation for ElevenLabs' Scribe speech-to-text API, providing real-time transcription capabilities with advanced context management and bidirectional streaming.

Features

  • Real-time Transcription: Stream audio directly from your microphone and get instant transcriptions
  • File-based Transcription: Upload audio files for batch processing
  • MCP Protocol Support: Full implementation of the Model Control Protocol for better context management
  • WebSocket Support: Real-time bidirectional communication
  • Context Management: Maintain conversation context for improved transcription accuracy
  • Multiple Audio Formats: Support for various audio formats with automatic conversion
  • Language Detection: Automatic language detection and confidence scoring
  • Event Detection: Identify speech and non-speech audio events

Installation

  1. Clone the repository:
git clone https://github.com/aromanstatue/MCP-Elevenlab-Scribe-ASR.git
cd MCP-Elevenlab-Scribe-ASR
  1. Create and activate a virtual environment:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install dependencies:
pip install -e .
  1. Create a .env file with your ElevenLabs API key:
ELEVENLABS_API_KEY=your-api-key-here

Usage

Starting the Server

python -m elevenlabs_scribe_mcp_server.main

The server will start on port 8000 by default (or the next available port).

Using the Example Client

  1. File Transcription:
python examples/client_example.py --file path/to/audio.wav
  1. Microphone Transcription:
python examples/client_example.py --mic

API Endpoints

  1. REST API:
  • POST /transcribe: Upload an audio file for transcription
  • GET /health: Health check endpoint
  1. WebSocket API:
  • ws://localhost:8000/ws/transcribe: Real-time audio transcription

MCP Protocol

The server implements the Model Control Protocol (MCP) with the following message types:

  1. INIT: Initialize a new transcription session
  2. START: Begin audio streaming
  3. AUDIO: Send audio data
  4. TRANSCRIPTION: Receive transcription results
  5. ERROR: Error messages
  6. STOP: End audio streaming
  7. DONE: Complete session

Development

Running Tests

pytest tests/

Project Structure

elevenlabs-scribe-mcp-server/
├── elevenlabs_scribe_mcp_server/
│   ├── __init__.py
│   ├── main.py              # FastAPI server
│   └── mcp/
│       ├── __init__.py
│       ├── protocol.py      # MCP protocol handler
│       ├── types.py         # Protocol types
│       └── elevenlabs.py    # ElevenLabs implementation
├── examples/
│   └── client_example.py    # Example client
├── tests/
│   └── test_transcribe.py   # Test suite
├── pyproject.toml           # Project metadata
└── README.md

Requirements

  • Python 3.8+
  • FastAPI
  • Uvicorn
  • PyAudio (for microphone support)
  • aiohttp
  • python-dotenv
  • pydantic

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

License

MIT License - see LICENSE file for details.

Acknowledgments

  • ElevenLabs for their excellent Scribe API
  • FastAPI for the modern web framework
  • The Python community for the amazing tools and libraries

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • n8n-io
  • Plateforme d'automatisation de workflow à code équitable avec des capacités d'IA natives. Combinez le bâtiment visuel avec du code personnalisé, de l'auto-hôte ou du cloud, 400+ intégrations.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 LLM 资料总结 (数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Résumé des meilleures ressources LLM du monde.

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • metorial
  • Versions conteneurisées de centaines de serveurs MCP 📡 🧠 🧠

    Reviews

    1 (1)
    Avatar
    user_DNJ2BBDg
    2025-04-15

    Couchbase MCP Server for LLMs is a game-changer! This server offers unparalleled scalability and speed for managing large language models. Aniket310101 has truly outdone themselves with this release, making it easier than ever to deploy and maintain complex ML tasks. Highly recommend! Check it out [here](https://mcp.so/server/MCP-Server-Couchbase/Aniket310101).