Cover image
Try Now
2025-03-09

一个智能代码存储系统,利用矢量嵌入,结构化数据库和知识图来存储,检索和分析具有语义搜索功能,质量指标和关系建模的代码模式。旨在通过上下文回顾最佳实践,算法和解决方案来增强编程工作流程。

3 years

Works with Finder

1

Github Watches

1

Github Forks

2

Github Stars

Coder DB - AI Memory Enhancement System

A structured memory system for AI assistants to enhance coding capabilities using database integration utilizing Claude Desktop and MCP Servers.

Overview

This system leverages multiple database types to create a comprehensive memory system for coding assistance:

  1. Qdrant Vector Database: For semantic search and retrieval of code patterns
  2. SQLite Database: For structured algorithm storage and versioning
  3. Knowledge Graph: For representing relationships between coding concepts

Database Usage Guide

Qdrant Memory Storage

For storing and retrieving code snippets, patterns, and solutions by semantic meaning.

What to store:

  • Reusable code patterns with explanations
  • Solutions to complex problems
  • Best practices and design patterns
  • Documentation fragments and explanations

Enhanced Metadata:

  • Language and framework details
  • Complexity level (simple, intermediate, advanced)
  • Dependencies and requirements
  • Quality metrics (cyclomatic complexity, documentation coverage)
  • User feedback and ratings

Example Usage:

# Storing a code pattern
information = {
    "type": "code_pattern",
    "language": "python",
    "name": "Context Manager Pattern",
    "code": "class MyContextManager:\n    def __enter__(self):\n        # Setup code\n        return self\n    def __exit__(self, exc_type, exc_val, exc_tb):\n        # Cleanup code\n        pass",
    "explanation": "Context managers provide a clean way to manage resources like file handles.",
    "tags": ["python", "resource management", "context manager"],
    "complexity": "intermediate",
    "quality_metrics": {
        "cyclomatic_complexity": 2,
        "documentation_coverage": 0.85
    },
    "user_rating": 4.5
}
# Store in Qdrant

SQLite Algorithm Database

For maintaining a structured catalog of algorithms with proper versioning.

Database Schema:

  • algorithms: Basic algorithm information (name, description)
  • algorithm_versions: Different versions of algorithm implementations
  • algorithm_categories: Categories like Sorting, Searching, Graph, etc.
  • performance_metrics: Performance data for different implementations
  • improvements: Tracked improvements between versions
  • change_logs: Detailed logs of changes with rationale and context

Version Diffing:

  • Store diffs between algorithm versions
  • Track performance improvements across versions
  • Document rationale behind changes

Example Query:

-- Find all sorting algorithms with performance metrics
SELECT a.name, a.description, v.version_number, p.time_complexity, p.space_complexity
FROM algorithms a
JOIN algorithm_versions v ON a.id = v.algorithm_id
JOIN performance_metrics p ON v.id = p.version_id
JOIN algorithm_category_mapping m ON a.id = m.algorithm_id
JOIN algorithm_categories c ON m.category_id = c.id
WHERE c.name = 'Sorting'
ORDER BY a.name, v.version_number DESC;

-- Get change logs for a specific algorithm
SELECT v.version_number, c.change_description, c.rationale, c.created_at
FROM algorithm_versions v
JOIN change_logs c ON v.id = c.version_id
WHERE v.algorithm_id = 5
ORDER BY v.version_number;

Knowledge Graph Integration

For representing complex relationships between coding concepts, patterns, and solutions.

Advanced Ontology:

  • Algorithm
  • DesignPattern
  • CodeConcept
  • ProblemType
  • Solution
  • Framework
  • Library
  • Language

Rich Relation Types:

  • IMPLEMENTS (Algorithm → CodeConcept)
  • SOLVES (DesignPattern → ProblemType)
  • OPTIMIZES (Algorithm → Performance)
  • RELATED_TO (Any → Any)
  • IMPROVES_UPON (Solution → Solution)
  • ALTERNATIVELY_SOLVES (Solution → ProblemType)
  • EXTENDS (Pattern → Pattern)
  • DEPENDS_ON (Solution → Library)
  • COMPATIBLE_WITH (Framework → Language)

Graph Analytics:

  • Identify frequently co-occurring patterns
  • Discover emerging trends in coding practices
  • Map problem domains to solution approaches

Usage Workflows

1. Enhanced Problem-Solving Workflow

When facing a new coding problem:

  1. Context Gathering:

    • Clearly define the problem and constraints
    • Identify performance requirements and environment details
    • Document project-specific considerations
  2. Memory Querying:

    • Break down the problem using sequential thinking
    • Query Qdrant for similar solutions: qdrant-find-memories("efficient way to traverse binary tree")
    • Filter results by language, complexity, and quality metrics
    • Check algorithm database for relevant algorithms: SELECT * FROM algorithms WHERE name LIKE '%tree%'
    • Explore knowledge graph for related concepts and alternative approaches
  3. Solution Application:

    • Test and verify solution in REPL
    • Document performance characteristics
    • Compare against alternatives
  4. Feedback Loop:

    • Store successful solution back in Qdrant with detailed metadata
    • Log performance metrics and usage context
    • Update knowledge graph connections

2. Pattern Learning & Storage

When discovering a useful pattern:

  1. Automated Documentation:

    • Generate initial documentation using AI tools
    • Include detailed usage examples
    • Document edge cases and limitations
  2. Quality Assessment:

    • Run linters and static analyzers to ensure code quality
    • Calculate and store quality metrics
    • Validate against best practices
  3. Metadata Enrichment:

    • Document the pattern with clear examples
    • Add comprehensive metadata (language, complexity, dependencies)
    • Apply consistent tagging from controlled vocabulary
  4. Knowledge Integration:

    • Store in Qdrant with appropriate tags and explanation
    • Create knowledge graph connections to related concepts
    • Add to SQL database if it's an algorithm implementation
    • Suggest automatic connections based on content similarity

3. Project Setup & Boilerplate

When starting a new project:

  1. Template Selection:

    • Choose from library of project templates
    • Customize based on project requirements
    • Select language, framework, and testing tools
  2. Automated Setup:

    • Generate project structure with proper directory layout
    • Set up version control with appropriate .gitignore
    • Configure linting and code quality tools
    • Initialize testing framework
  3. Best Practices Integration:

    • Query memory system for relevant boilerplate code
    • Retrieve best practices for the specific project type
    • Use stored documentation templates for initial setup
    • Configure CI/CD based on project requirements

Security & Data Integrity

  1. Access Controls:

    • Role-based access for sensitive code repositories
    • Permissions for viewing vs. modifying memories
  2. Backup & Recovery:

    • Regular backups of Qdrant and SQLite databases
    • Version control for knowledge graph
    • Recovery procedures for data corruption
  3. Sensitive Information:

    • Sanitize code examples to remove sensitive data
    • Validate code snippets before storage
    • Flag and restrict access to sensitive patterns

Monitoring & Analytics

  1. Usage Tracking:

    • Monitor which patterns are most frequently retrieved
    • Track search query patterns to identify knowledge gaps
    • Log user ratings and feedback
  2. Performance Metrics:

    • Monitor database response times
    • Track memory usage and scaling requirements
    • Optimize queries based on usage patterns

Maintenance Guidelines

  1. Quality over Quantity: Only store high-quality, well-documented code
  2. Regular Review: Periodically review and update stored patterns
  3. Contextual Storage: Include usage context with each stored pattern
  4. Versioning: Track improvements and versions in SQLite
  5. Tagging Consistency: Use controlled vocabulary for better retrieval
  6. Performance Optimization: Regularly optimize database queries
  7. Feedback Integration: Update patterns based on usage feedback

Getting Started

  1. Store your first code memory:

    qdrant-store-memory(json.dumps({
        "type": "code_pattern",
        "name": "Python decorator pattern",
        "code": "def my_decorator(func):\n    def wrapper(*args, **kwargs):\n        # Do something before\n        result = func(*args, **kwargs)\n        # Do something after\n        return result\n    return wrapper",
        "explanation": "Decorators provide a way to modify functions without changing their code.",
        "tags": ["python", "decorator", "metaprogramming"],
        "complexity": "intermediate"
    }))
    
  2. Retrieve it later:

    qdrant-find-memories("python decorator pattern")
    

Future Enhancements

  • Advanced code quality assessment before storage
  • Integration with version control systems
  • Learning from usage patterns to improve retrieval
  • Automated documentation generation
  • Custom IDE plugins for seamless access
  • Multi-modal storage (code, diagrams, explanations)
  • Natural language interface for querying
  • Performance benchmark database
  • Install script for MCP Servers and DB

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • https://tovuti.be
  • Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven

  • ANGEL LEON
  • A world class elite tech co-founder entrepreneur, expert in software development, entrepreneurship, marketing, coaching style leadership and aligned with ambition for excellence, global market penetration and worldy perspectives.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Gil kaminski
  • Make sure you are post-ready before you post on social media

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • OffchainLabs
  • 进行以太坊的实施

  • huahuayu
  • 统一的API网关,用于将多个Etherscan样区块链Explorer API与对AI助手的模型上下文协议(MCP)支持。

  • deemkeen
  • 用电源组合控制您的MBOT2:MQTT+MCP+LLM

  • zhaoyunxing92
  • MCP(消息连接器协议)服务

  • pontusab
  • 光标与风浪冲浪社区,查找规则和MCP

    Reviews

    3 (1)
    Avatar
    user_fjX4ZzJA
    2025-04-16

    As a dedicated MCP application user, I highly recommend checking out coder_db by angrysky56. This powerful tool has vastly improved my database management tasks, making them more efficient and streamlined. The seamless integration and user-friendly interface allowed me to focus more on coding rather than fiddling with complex database setups. You can find more information at https://github.com/angrysky56/coder_db. Give it a try and see how it can enhance your workflow!