MCP cover image
See in Github
2025-03-13

Ce projet montre comment utiliser le rendu du navigateur CloudFlare pour extraire le contenu Web pour le contexte LLM. Il comprend des expériences avec l'API REST et l'API de liaison des travailleurs, ainsi qu'une implémentation de serveur MCP qui peut être utilisée pour fournir un contexte Web à LLMS.

1

Github Watches

2

Github Forks

3

Github Stars

Cloudflare Browser Rendering Experiments & MCP Server

This project demonstrates how to use Cloudflare Browser Rendering to extract web content for LLM context. It includes experiments with the REST API and Workers Binding API, as well as an MCP server implementation that can be used to provide web context to LLMs.

Web Content Server MCP server

Project Structure

cloudflare-browser-rendering/
├── examples/                   # Example implementations and utilities
│   ├── basic-worker-example.js # Basic Worker with Browser Rendering
│   ├── minimal-worker-example.js # Minimal implementation
│   ├── debugging-tools/        # Tools for debugging
│   │   └── debug-test.js       # Debug test utility
│   └── testing/                # Testing utilities
│       └── content-test.js     # Content testing utility
├── experiments/                # Educational experiments
│   ├── basic-rest-api/         # REST API tests
│   ├── puppeteer-binding/      # Workers Binding API tests
│   └── content-extraction/     # Content processing tests
├── src/                        # MCP server source code
│   ├── index.ts                # Main entry point
│   ├── server.ts               # MCP server implementation
│   ├── browser-client.ts       # Browser Rendering client
│   └── content-processor.ts    # Content processing utilities
├── puppeteer-worker.js         # Cloudflare Worker with Browser Rendering binding
├── test-puppeteer.js           # Tests for the main implementation
├── wrangler.toml               # Wrangler configuration for the Worker
├── cline_mcp_settings.json.example # Example MCP settings for Cline
├── .gitignore                  # Git ignore file
└── LICENSE                     # MIT License

Prerequisites

  • Node.js (v16 or later)
  • A Cloudflare account with Browser Rendering enabled
  • TypeScript
  • Wrangler CLI (for deploying the Worker)

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/cloudflare-browser-rendering.git
cd cloudflare-browser-rendering
  1. Install dependencies:
npm install

Cloudflare Worker Setup

  1. Install the Cloudflare Puppeteer package:
npm install @cloudflare/puppeteer
  1. Configure Wrangler:
# wrangler.toml
name = "browser-rendering-api"
main = "puppeteer-worker.js"
compatibility_date = "2023-10-30"
compatibility_flags = ["nodejs_compat"]

[browser]
binding = "browser"
  1. Deploy the Worker:
npx wrangler deploy
  1. Test the Worker:
node test-puppeteer.js

Running the Experiments

Basic REST API Experiment

This experiment demonstrates how to use the Cloudflare Browser Rendering REST API to fetch and process web content:

npm run experiment:rest

Puppeteer Binding API Experiment

This experiment demonstrates how to use the Cloudflare Browser Rendering Workers Binding API with Puppeteer for more advanced browser automation:

npm run experiment:puppeteer

Content Extraction Experiment

This experiment demonstrates how to extract and process web content specifically for use as context in LLMs:

npm run experiment:content

MCP Server

The MCP server provides tools for fetching and processing web content using Cloudflare Browser Rendering for use as context in LLMs.

Building the MCP Server

npm run build

Running the MCP Server

npm start

Or, for development:

npm run dev

MCP Server Tools

The MCP server provides the following tools:

  1. fetch_page - Fetches and processes a web page for LLM context
  2. search_documentation - Searches Cloudflare documentation and returns relevant content
  3. extract_structured_content - Extracts structured content from a web page using CSS selectors
  4. summarize_content - Summarizes web content for more concise LLM context

Configuration

To use your Cloudflare Browser Rendering endpoint, set the BROWSER_RENDERING_API environment variable:

export BROWSER_RENDERING_API=https://YOUR_WORKER_URL_HERE

Replace YOUR_WORKER_URL_HERE with the URL of your deployed Cloudflare Worker. You'll need to replace this placeholder in several files:

  1. In test files: test-puppeteer.js, examples/debugging-tools/debug-test.js, examples/testing/content-test.js
  2. In the MCP server configuration: cline_mcp_settings.json.example
  3. In the browser client: src/browser-client.ts (as a fallback if the environment variable is not set)

Integrating with Cline

To integrate the MCP server with Cline, copy the cline_mcp_settings.json.example file to the appropriate location:

cp cline_mcp_settings.json.example ~/Library/Application\ Support/Code/User/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json

Or add the configuration to your existing cline_mcp_settings.json file.

Key Learnings

  1. Cloudflare Browser Rendering requires the @cloudflare/puppeteer package to interact with the browser binding.
  2. The correct pattern for using the browser binding is:
    import puppeteer from '@cloudflare/puppeteer';
    
    // Then in your handler:
    const browser = await puppeteer.launch(env.browser);
    const page = await browser.newPage();
    
  3. When deploying a Worker that uses the Browser Rendering binding, you need to enable the nodejs_compat compatibility flag.
  4. Always close the browser after use to avoid resource leaks.

License

MIT

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://jgadvisorycpa.com
  • This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • modelcontextprotocol
  • Serveurs de protocole de contexte modèle

  • huahuayu
  • Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.

  • Mintplex-Labs
  • L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.

    Reviews

    1 (1)
    Avatar
    user_FPSmpejU
    2025-04-15

    MinionWorks is a game-changer for automating browser tasks! Its modular agents make it incredibly flexible and easy to use. Plus, who can resist the fun banana theme? Whether you're tech-savvy or a newbie, this tool simplifies your workflow. Highly recommend! 🍌