Cover image
Try Now
2025-04-04

Servidor MCP para interactuar con el catálogo de Apache Iceberg de Claude, habilitando Data Lake Discovery y Metadata Search a través de un aviso de LLM.

3 years

Works with Finder

1

Github Watches

0

Github Forks

3

Github Stars

MCP Iceberg Catalog

smithery badge

A MCP (Model Context Protocol) server implementation for interacting with Apache Iceberg. This server provides a SQL interface for querying and managing Iceberg tables through Claude desktop.

Claude Desktop as your Iceberg Data Lake Catalog

image

How to Install in Claude Desktop

Installing via Smithery

To install MCP Iceberg Catalog for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @ahodroj/mcp-iceberg-service --client claude
  1. Prerequisites

    • Python 3.10 or higher
    • UV package installer (recommended) or pip
    • Access to an Iceberg REST catalog and S3-compatible storage
  2. How to install in Claude Desktop Add the following configuration to claude_desktop_config.json:

{
  "mcpServers": {
    "iceberg": {
      "command": "uv",
      "args": [
        "--directory",
        "PATH_TO_/mcp-iceberg-service",
        "run",
        "mcp-server-iceberg"
      ],
      "env": {
        "ICEBERG_CATALOG_URI" : "http://localhost:8181",
        "ICEBERG_WAREHOUSE" : "YOUR ICEBERG WAREHOUSE NAME",
        "S3_ENDPOINT" : "OPTIONAL IF USING S3",
        "AWS_ACCESS_KEY_ID" : "YOUR S3 ACCESS KEY",
        "AWS_SECRET_ACCESS_KEY" : "YOUR S3 SECRET KEY"
      }
    }
  }
}

Design

Architecture

The MCP server is built on three main components:

  1. MCP Protocol Handler

    • Implements the Model Context Protocol for communication with Claude
    • Handles request/response cycles through stdio
    • Manages server lifecycle and initialization
  2. Query Processor

    • Parses SQL queries using sqlparse
    • Supports operations:
      • LIST TABLES
      • DESCRIBE TABLE
      • SELECT
      • INSERT
  3. Iceberg Integration

    • Uses pyiceberg for table operations
    • Integrates with PyArrow for efficient data handling
    • Manages catalog connections and table operations

PyIceberg Integration

The server utilizes PyIceberg in several ways:

  1. Catalog Management

    • Connects to REST catalogs
    • Manages table metadata
    • Handles namespace operations
  2. Data Operations

    • Converts between PyIceberg and PyArrow types
    • Handles data insertion through PyArrow tables
    • Manages table schemas and field types
  3. Query Execution

    • Translates SQL to PyIceberg operations
    • Handles data scanning and filtering
    • Manages result set conversion

Further Implementation Needed

  1. Query Operations

    • Implement UPDATE operations
    • Add DELETE support
    • Support for CREATE TABLE with schema definition
    • Add ALTER TABLE operations
    • Implement table partitioning support
  2. Data Types

    • Support for complex types (arrays, maps, structs)
    • Add timestamp with timezone handling
    • Support for decimal types
    • Add nested field support
  3. Performance Improvements

    • Implement batch inserts
    • Add query optimization
    • Support for parallel scans
    • Add caching layer for frequently accessed data
  4. Security Features

    • Add authentication mechanisms
    • Implement role-based access control
    • Add row-level security
    • Support for encrypted connections
  5. Monitoring and Management

    • Add metrics collection
    • Implement query logging
    • Add performance monitoring
    • Support for table maintenance operations
  6. Error Handling

    • Improve error messages
    • Add retry mechanisms for transient failures
    • Implement transaction support
    • Add data validation

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • JackKuo666
  • 🔍 Habilitar asistentes de IA para buscar y acceder a la información del paquete PYPI a través de una interfaz MCP simple.

  • av
  • Ejecute sin esfuerzo LLM Backends, API, frontends y servicios con un solo comando.

    Reviews

    1 (1)
    Avatar
    user_pdqMRrCr
    2025-04-17

    As a dedicated user of mcp-applications, I highly recommend the mcp-iceberg-service developed by ahodroj. This service offers outstanding features and seamless integration, making it a must-have for any project. The documentation provided on the GitHub link is clear and helpful, ensuring a smooth setup process. Overall, an excellent tool that demonstrates attention to detail and user needs. Check it out at https://github.com/ahodroj/mcp-iceberg-service.