I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

mcp_server
Repositorio para la implementación del servidor MCP
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
MCP Server Implementation
A complete Flask-based implementation of Model Context Protocol (MCP) for enhancing Large Language Model capabilities with external tools.
Overview
This repository demonstrates how to build a server that handles Model Context Protocol (MCP), a method for extending LLM capabilities through tool invocation directly in the model's text output. Unlike function calling, MCP places tool definitions directly in the context window and parses the model's natural language responses to identify tool usage.
Features
- 🔧 Complete MCP Implementation: Full parsing, execution, and response handling
- 🌤️ Sample Tools: Weather and calculator tools with parameter validation
- 🔄 Conversation Flow: Maintains context across multiple interactions
- 🧩 Regex-Based Parsing: Flexible text parsing for tool invocations
- 🚀 Flask API: REST API endpoints for chat integration
Project Structure
mcp_server/
├── app.py # Main Flask application
├── mcp_handler.py # MCP parsing and execution
├── mcp_example.py # Standalone MCP example
├── requirements.txt # Dependencies
├── tools/ # Tool implementations
│ ├── __init__.py
│ ├── weather.py # Weather API tool
│ └── calculator.py # Calculator tool
└── README.md # This file
Installation
-
Clone the repository:
git clone https://github.com/yourusername/mcp-server.git cd mcp-server
-
Create a virtual environment:
python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate
-
Install dependencies:
pip install -r requirements.txt
-
Set up environment variables:
# Create a .env file with: LLM_API_KEY=your_llm_api_key_here WEATHER_API_KEY=your_weather_api_key_here FLASK_APP=app.py FLASK_ENV=development
Usage
Running the Server
Start the Flask development server:
flask run
For production:
gunicorn app:app
API Endpoints
-
POST /chat: Process chat messages with MCP
curl -X POST http://localhost:5000/chat \ -H "Content-Type: application/json" \ -d '{ "messages": [ { "role": "user", "content": "What's the weather like in Boston?" } ] }'
Standalone Example
Run the example script to see MCP in action:
python mcp_example.py
How It Works
- Tool Registration: Tools are registered with their parameters and execution logic
- Tool Definition Injection: XML-formatted tool descriptions are added to the prompt
- LLM Response Processing: Regex patterns identify tool calls in the LLM's text output
- Tool Execution: Parameters are parsed and passed to appropriate tool handlers
- Result Injection: Tool execution results are inserted back into the response
MCP vs. Function Calling
Feature | MCP | Function Calling |
---|---|---|
Definition Location | In prompt text | In API parameters |
Invocation Format | Natural language | Structured JSON |
Implementation | Text parsing | API integration |
Visibility | Visible in response | May be hidden |
Platform Support | Any text-based LLM | Requires API support |
Example Conversation
User: What's the weather like in Boston?
LLM:
I'll check the weather for you.
get_weather(location="Boston, MA", unit="fahrenheit")
After Processing:
I'll check the weather for you.
get_weather(location="Boston, MA", unit="fahrenheit")
Result from get_weather:
{
"location": "Boston, MA",
"temperature": 72,
"unit": "fahrenheit",
"conditions": "Partly Cloudy",
"humidity": 68,
"wind_speed": 5.8
}
Adding Your Own Tools
- Create a new class inheriting from
Tool
- Define parameters and execution logic
- Register with the MCP handler
Example:
class MyTool(Tool):
def __init__(self):
parameters = [
{
"name": "param1",
"type": "string",
"description": "Description of param1",
"required": True
}
]
super().__init__(
name="my_tool",
description="Description of my tool",
parameters=parameters
)
def execute(self, param1):
# Tool logic here
return {"result": "Processed " + param1}
MCP Configuration and Invocation Flow
-
Tool Registration:
- MCP tools are registered with the handler
- Each tool provides its name, description, and parameter definitions
-
Tool Definition Injection:
- Tool definitions are added to the system message
- Format follows XML structure for MCP
-
LLM Response Processing:
- LLM generates responses that may include tool invocations
- Pattern matching identifies tool calls in the text
- Tool parameters are parsed and passed to tool execution methods
-
Tool Execution:
- Tools are executed with the provided parameters
- Results are injected back into the conversation
-
Conversation Management:
- Processed responses with tool results are added to conversation history
- Future LLM requests include this history for context
Example Conversation
Here's an example of what a conversation might look like:
User: What's the weather like in Boston?
System: Sends prompt with MCP tool definitions to LLM
LLM Response:
I'll check the weather for you.
get_weather(location="Boston, MA", unit="fahrenheit")
MCP Handler: Parses the response, finds the tool call, and executes the weather tool
Tool Execution Result:
Result from get_weather:
{
"location": "Boston, MA",
"temperature": 72,
"unit": "fahrenheit",
"conditions": "Partly Cloudy",
"humidity": 68,
"wind_speed": 5.8
}
Processed Response (sent back to user):
I'll check the weather for you.
get_weather(location="Boston, MA", unit="fahrenheit")
Result from get_weather:
{
"location": "Boston, MA",
"temperature": 72,
"unit": "fahrenheit",
"conditions": "Partly Cloudy",
"humidity": 68,
"wind_speed": 5.8
}
User: Can you calculate the square root of 144?
LLM Response:
I can calculate that for you.
calculator(expression="sqrt(144)")
MCP Handler: Parses response, executes calculator tool
Tool Execution Result:
Result from calculator:
{
"expression": "sqrt(144)",
"result": 12.0
}
Processed Response (sent back to user):
I can calculate that for you.
calculator(expression="sqrt(144)")
Result from calculator:
{
"expression": "sqrt(144)",
"result": 12.0
}
The square root of 144 is 12.
This demonstrates the complete flow of MCP tool usage, from the LLM's text-based invocation through execution and response processing.
License
MIT
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Espejo de https: //github.com/bitrefill/bitrefill-mcp-server
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Reviews

user_53B2ADK5
I've been using the mcp_server developed by yisu201506, and it's truly impressive. This server application offers seamless integration, is easy to deploy, and exhibits incredible performance. The detailed documentation and active community support further enhance the user experience. Highly recommend visiting the GitHub link for more information and to get started!