I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-server-apache-airflow
3 years
Works with Finder
2
Github Watches
6
Github Forks
25
Github Stars
mcp-server-apache-airflow
A Model Context Protocol (MCP) server implementation for Apache Airflow, enabling seamless integration with MCP clients. This project provides a standardized way to interact with Apache Airflow through the Model Context Protocol.
About
This project implements a Model Context Protocol server that wraps Apache Airflow's REST API, allowing MCP clients to interact with Airflow in a standardized way. It uses the official Apache Airflow client library to ensure compatibility and maintainability.
Feature Implementation Status
Feature | API Path | Status |
---|---|---|
DAG Management | ||
List DAGs | /api/v1/dags |
✅ |
Get DAG Details | /api/v1/dags/{dag_id} |
✅ |
Pause DAG | /api/v1/dags/{dag_id} |
✅ |
Unpause DAG | /api/v1/dags/{dag_id} |
✅ |
Update DAG | /api/v1/dags/{dag_id} |
✅ |
Delete DAG | /api/v1/dags/{dag_id} |
✅ |
Get DAG Source | /api/v1/dagSources/{file_token} |
✅ |
Patch Multiple DAGs | /api/v1/dags |
✅ |
Reparse DAG File | /api/v1/dagSources/{file_token}/reparse |
✅ |
DAG Runs | ||
List DAG Runs | /api/v1/dags/{dag_id}/dagRuns |
✅ |
Create DAG Run | /api/v1/dags/{dag_id}/dagRuns |
✅ |
Get DAG Run Details | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} |
✅ |
Update DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} |
✅ |
Delete DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id} |
✅ |
Get DAG Runs Batch | /api/v1/dags/~/dagRuns/list |
✅ |
Clear DAG Run | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/clear |
✅ |
Set DAG Run Note | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/setNote |
✅ |
Get Upstream Dataset Events | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/upstreamDatasetEvents |
✅ |
Tasks | ||
List DAG Tasks | /api/v1/dags/{dag_id}/tasks |
✅ |
Get Task Details | /api/v1/dags/{dag_id}/tasks/{task_id} |
✅ |
Get Task Instance | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} |
✅ |
List Task Instances | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances |
✅ |
Update Task Instance | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id} |
✅ |
Clear Task Instances | /api/v1/dags/{dag_id}/clearTaskInstances |
✅ |
Set Task Instances State | /api/v1/dags/{dag_id}/updateTaskInstancesState |
✅ |
Variables | ||
List Variables | /api/v1/variables |
✅ |
Create Variable | /api/v1/variables |
✅ |
Get Variable | /api/v1/variables/{variable_key} |
✅ |
Update Variable | /api/v1/variables/{variable_key} |
✅ |
Delete Variable | /api/v1/variables/{variable_key} |
✅ |
Connections | ||
List Connections | /api/v1/connections |
✅ |
Create Connection | /api/v1/connections |
✅ |
Get Connection | /api/v1/connections/{connection_id} |
✅ |
Update Connection | /api/v1/connections/{connection_id} |
✅ |
Delete Connection | /api/v1/connections/{connection_id} |
✅ |
Test Connection | /api/v1/connections/test |
✅ |
Pools | ||
List Pools | /api/v1/pools |
✅ |
Create Pool | /api/v1/pools |
✅ |
Get Pool | /api/v1/pools/{pool_name} |
✅ |
Update Pool | /api/v1/pools/{pool_name} |
✅ |
Delete Pool | /api/v1/pools/{pool_name} |
✅ |
XComs | ||
List XComs | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries |
✅ |
Get XCom Entry | /api/v1/dags/{dag_id}/dagRuns/{dag_run_id}/taskInstances/{task_id}/xcomEntries/{xcom_key} |
✅ |
Datasets | ||
List Datasets | /api/v1/datasets |
✅ |
Get Dataset | /api/v1/datasets/{uri} |
✅ |
Get Dataset Events | /api/v1/datasetEvents |
✅ |
Create Dataset Event | /api/v1/datasetEvents |
✅ |
Get DAG Dataset Queued Event | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri} |
✅ |
Get DAG Dataset Queued Events | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents |
✅ |
Delete DAG Dataset Queued Event | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents/{uri} |
✅ |
Delete DAG Dataset Queued Events | /api/v1/dags/{dag_id}/dagRuns/queued/datasetEvents |
✅ |
Get Dataset Queued Events | /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents |
✅ |
Delete Dataset Queued Events | /api/v1/datasets/{uri}/dagRuns/queued/datasetEvents |
✅ |
Monitoring | ||
Get Health | /api/v1/health |
✅ |
DAG Stats | ||
Get DAG Stats | /api/v1/dags/statistics |
✅ |
Config | ||
Get Config | /api/v1/config |
✅ |
Plugins | ||
Get Plugins | /api/v1/plugins |
✅ |
Providers | ||
List Providers | /api/v1/providers |
✅ |
Event Logs | ||
List Event Logs | /api/v1/eventLogs |
✅ |
Get Event Log | /api/v1/eventLogs/{event_log_id} |
✅ |
System | ||
Get Import Errors | /api/v1/importErrors |
✅ |
Get Import Error Details | /api/v1/importErrors/{import_error_id} |
✅ |
Get Health Status | /api/v1/health |
✅ |
Get Version | /api/v1/version |
✅ |
Setup
Dependencies
This project depends on the official Apache Airflow client library (apache-airflow-client
). It will be automatically installed when you install this package.
Environment Variables
Set the following environment variables:
AIRFLOW_HOST=<your-airflow-host>
AIRFLOW_USERNAME=<your-airflow-username>
AIRFLOW_PASSWORD=<your-airflow-password>
Usage with Claude Desktop
Add to your claude_desktop_config.json
:
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uvx",
"args": ["mcp-server-apache-airflow"],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
Alternative configuration using uv
:
{
"mcpServers": {
"mcp-server-apache-airflow": {
"command": "uv",
"args": [
"--directory",
"/path/to/mcp-server-apache-airflow",
"run",
"mcp-server-apache-airflow"
],
"env": {
"AIRFLOW_HOST": "https://your-airflow-host",
"AIRFLOW_USERNAME": "your-username",
"AIRFLOW_PASSWORD": "your-password"
}
}
}
}
Replace /path/to/mcp-server-apache-airflow
with the actual path where you've cloned the repository.
Selecting the API groups
You can select the API groups you want to use by setting the --apis
flag.
uv run mcp-server-apache-airflow --apis "dag,dagrun"
The default is to use all APIs.
Allowed values are:
- config
- connections
- dag
- dagrun
- dagstats
- dataset
- eventlog
- importerror
- monitoring
- plugin
- pool
- provider
- taskinstance
- variable
- xcom
Manual Execution
You can also run the server manually:
make run
make run
accepts following options:
Options:
-
--port
: Port to listen on for SSE (default: 8000) -
--transport
: Transport type (stdio/sse, default: stdio)
Or, you could run the sse server directly, which accepts same parameters:
make run-sse
Installing via Smithery
To install Apache Airflow MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @yangkyeongmo/mcp-server-apache-airflow --client claude
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
License
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Therapist adept at identifying core issues and offering practical advice with images.
Advanced software engineer GPT that excels through nailing the basics.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Espejo de https: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_8kbxOxb7
I'm genuinely impressed with mcp-server-apache-airflow by yangkyeongmo. This tool has streamlined our workflow automation significantly. It's robust, user-friendly, and integrates seamlessly with our systems. Highly recommend checking it out on GitHub!