I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

MCP-Fastapi-Learning
Un repositorio de pruebas creado con el servidor GitHub MCP
3 years
Works with Finder
1
Github Watches
0
Github Forks
0
Github Stars
FastAPI Hello World Application
A simple Hello World API built with FastAPI and MCP SSE support.
Features
- Root endpoint that returns a Hello World message
- Dynamic greeting endpoint that takes a name parameter
- OpenAI integration with GPT-4o for advanced AI-powered chat completions
- Automatic API documentation with Swagger UI
Prerequisites
- Python 3.7+ (for local setup)
- pip (Python package installer)
- OpenAI API key (for the
/openai
endpoint) - Docker (optional, for containerized setup)
Setup Instructions
You can run this application either locally or using Docker.
Local Setup
1. Clone the repository
git clone https://github.com/xxradar/mcp-test-repo.git
cd mcp-test-repo
2. Create a virtual environment (optional but recommended)
# On macOS/Linux
python -m venv venv
source venv/bin/activate
# On Windows
python -m venv venv
venv\Scripts\activate
3. Install dependencies
pip install -r requirements.txt
4. Run the application
uvicorn main:app --reload
The application will start and be available at http://127.0.0.1:8000
Alternatively, you can run the application directly with Python:
python main.py
Docker Setup
1. Clone the repository
git clone https://github.com/xxradar/mcp-test-repo.git
cd mcp-test-repo
2. Build the Docker image
docker build -t fastapi-hello-world .
3. Run the Docker container
docker run -p 8000:8000 fastapi-hello-world
The application will be available at http://localhost:8000
API Endpoints
-
GET /
: Returns a simple Hello World message -
GET /hello/{name}
: Returns a personalized greeting with the provided name -
GET /openai
: Returns a response from OpenAI's GPT-4o model (accepts an optionalprompt
query parameter) -
GET /docs
: Swagger UI documentation -
GET /redoc
: ReDoc documentation
OpenAI Integration
The /openai
endpoint uses OpenAI's GPT-4o model and requires an OpenAI API key to be set as an environment variable:
Local Setup
# Set the OpenAI API key as an environment variable
export OPENAI_API_KEY=your_api_key_here
# Run the application
uvicorn main:app --reload
Docker Setup
# Run the Docker container with the OpenAI API key
docker run -p 8000:8000 -e OPENAI_API_KEY=your_api_key_here fastapi-hello-world
Example Usage
Using curl
# Get Hello World message
curl http://127.0.0.1:8000/
# Get personalized greeting
curl http://127.0.0.1:8000/hello/John
# Get OpenAI chat completion with default prompt
curl http://127.0.0.1:8000/openai
# Get OpenAI chat completion with custom prompt
curl "http://127.0.0.1:8000/openai?prompt=Tell%20me%20a%20joke%20about%20programming"
Using MCP
Connect to MCP Inspector
npx @modelcontextprotocol/inspector
Using a web browser
- Open http://127.0.0.1:8000/ in your browser for the Hello World message
- Open http://127.0.0.1:8000/hello/John in your browser for a personalized greeting
- Open http://127.0.0.1:8000/openai in your browser to get a response from OpenAI with the default prompt
- Open http://127.0.0.1:8000/openai?prompt=What%20is%20FastAPI? in your browser to get a response about FastAPI
- Open http://127.0.0.1:8000/docs for the Swagger UI documentation
Development
To make changes to the application, edit the main.py
file. The server will automatically reload if you run it with the --reload
flag.
相关推荐
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Therapist adept at identifying core issues and offering practical advice with images.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Espejo de https: //github.com/bitrefill/bitrefill-mcp-server
Reviews

user_cUcMWiS6
As a dedicated MCP user, I highly recommend the Linear Regression MCP created by HeetVekariya. This tool is exceptionally user-friendly and provides precise linear regression modeling. It’s perfect for both beginners and advanced users needing reliable predictions and analysis. The seamless integration and thorough documentation make it a top choice in the MCP ecosystem. Check it out here: https://mcp.so/server/Linear-Regression-MCP/HeetVekariya