Confidential guide on numerology and astrology, based of GG33 Public information

MCP-Mindmesh
Claude 3.7 Swarm con coherencia de campo: un servidor de protocolo de contexto modelo (MCP) que orquesta múltiples instancias especializadas de Claude 3.7 sonnet en un enjambre inspirado en cuantos. Crea un efecto de coherencia de campo en el reconocimiento de patrones, la teoría de la información y los especialistas de razonamiento para producir respuestas óptimamente coherentes a partir de la inteligencia del conjunto.
3 years
Works with Finder
1
Github Watches
0
Github Forks
1
Github Stars
MindMesh MCP Server
A Model Context Protocol (MCP) server implementation that creates a quantum-inspired swarm of Claude 3.7 Sonnet instances with field coherence optimization. This server enables enriched reasoning through multiple specialized LLM instances that work together with emergent properties.
Features
- Quantum-Inspired Field Computing: Uses a field-based model to maintain coherence between Claude instances
- WebContainer Integration: Full stack sandboxed environment for execution
- PGLite with Vector Storage: Efficient vector database with pgvector extension
- Multiple Claude Specializations: Instances focus on pattern recognition, information synthesis, and reasoning
- Coherence Optimization: Selects the most coherent outputs across instances
- Extended Thinking Support: Optional 128k token thinking capability
- Live Query Updates: Real-time coherence notifications through PGLite live extension
- VoyageAI Embeddings: High-quality embeddings using VoyageAI's state-of-the-art models (voyage-3-large)
Prerequisites
- Node.js 18.x or higher
- Anthropic API key with access to Claude 3.7 Sonnet
- VoyageAI API key (optional but recommended for better embeddings)
Installation
-
Clone this repository:
git clone https://github.com/wheattoast11/mcp-mindmesh.git cd mcp-mindmesh
-
Install dependencies:
npm install
-
Create a
.env
file by copying the template:cp .env.template .env
-
Edit
.env
and add your Anthropic API key, VoyageAI API key (optional), and adjust other settings as needed.
Usage
Starting the Server
Build and start the server:
npm run build
npm start
For development with auto-reload:
npm run dev
Connecting to the Server
You can connect to this MCP server using any MCP client, such as:
- Claude Desktop Application for Windows (official Anthropic client)
- Cursor IDE's agent capabilities
- Cline VSCode extension
- Any other MCP-compatible client
The server will be available at http://localhost:3000
by default (or whichever port you specified in the .env
file).
Using the Reasoning Tool
The main tool provided by this server is reason_with_swarm
. This tool takes a prompt and processes it through multiple specialized Claude instances, returning the most coherent result.
Example usage in Claude Desktop:
Please use the swarm to analyze the relationship between quantum field theory and consciousness.
Configuration Options
All configuration options can be set in the .env
file:
Environment Variable | Description | Default |
---|---|---|
ANTHROPIC_API_KEY |
Your Anthropic API key | (required) |
VOYAGE_API_KEY |
Your VoyageAI API key | (optional) |
PORT |
HTTP server port | 3000 |
STDIO_TRANSPORT |
Use stdio transport instead of HTTP | false |
CLAUDE_INSTANCES |
Number of Claude instances in the swarm | 8 |
USE_EXTENDED_THINKING |
Enable 128k extended thinking | true |
COHERENCE_THRESHOLD |
Minimum coherence threshold | 0.7 |
EMBEDDING_MODEL |
VoyageAI embedding model to use | voyage-3-large |
DB_PATH |
Path for the PGLite database | "idb://mindmesh.db" |
DEBUG |
Enable debug logging | false |
Architecture
The server architecture consists of:
- MCP Server Layer: Implements the Model Context Protocol (2025-03-26 specification)
- WebContainer Layer: Provides sandboxed environment for execution
- PGLite Vector Database: Stores state vectors with pgvector extension
- Claude Swarm Layer: Manages multiple specialized Claude instances
- Quantum Field Layer: Handles field coherence and optimization
- Embedding Layer: Generates high-quality embeddings using VoyageAI models
Requests flow through these layers as follows:
Client Request → MCP Server → Swarm Processing → Claude API → Coherence Optimization → Response
Advanced Features
Web Container Integration
The server uses WebContainer technology for a fully sandboxed environment, providing:
- Isolated execution environment
- Full stack capabilities
- File system access
- Network communication
PGLite with Vector Extension
PGLite provides:
- Client-side PostgreSQL database compiled to WebAssembly
- Vector operations through pgvector extension
- Live query notifications for real-time updates
- Persistent storage across sessions
Field Coherence Optimization
The coherence optimization system:
- Processes a query through multiple specialized Claude instances
- Generates state vectors for each response
- Calculates coherence metrics between instances
- Selects the most coherent output
- Maintains a dynamic field state in the vector database
VoyageAI Embeddings
The server uses VoyageAI's state-of-the-art embedding models for:
- High-quality state vector generation
- More accurate coherence calculations
- Better field modeling and optimization
When VoyageAI API key is not available, the server falls back to a simpler, deterministic embedding method.
Development
Project Structure
-
src/index.ts
: Main entry point -
src/server.ts
: Core server implementation -
.env
: Configuration file -
package.json
: Dependencies and scripts
Building
npm run build
This will compile TypeScript to JavaScript in the dist
directory.
Testing
npm test
License
MIT
Acknowledgements
This project uses the following technologies:
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease
I find academic articles and books for research and literature reviews.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Espejo dehttps: //github.com/agentience/practices_mcp_server
Espejo de https: //github.com/bitrefill/bitrefill-mcp-server
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo
Reviews

user_RI4Ih8ls
I've been using mcp-mindmesh by wheattoast11, and it's a fantastic tool! The user-friendly interface and robust features make it an essential part of my daily workflow. I highly recommend it to anyone looking to streamline their tasks and enhance productivity. Check it out on GitHub!