
servidor de ragflow-mcp
1
Github Watches
1
Github Forks
2
Github Stars
RAGFlow MCP Server
RAGFlow API MCP Server,可以查找知识库和聊天。
下载 MCP 开发文档和 RAGFlow API 参考:
wget https://modelcontextprotocol.io/llms-full.txt -O docs/mcp-llms-full.txt
wget https://github.com/infiniflow/ragflow/raw/refs/heads/main/docs/references/python_api_reference.md -O docs/ragflow-python_api_reference.md
Components
Tools
-
list_datasets
- 列出所有数据集
- 返回数据集的 ID 和名称
-
create_chat
- 创建一个新的聊天助手
- 输入:
- name: 聊天助手的名称
- dataset_id: 数据集的 ID
- 返回创建的聊天助手的 ID、名称和会话 ID
-
chat
- 与聊天助手进行对话
- 输入:
- session_id: 聊天助手的会话 ID
- question: 提问内容
- 返回聊天助手的回答
Configuration
[TODO: Add configuration details specific to your implementation]
Quickstart
Install
GitHub Copilot
.vscode/mcp.json
{
"servers": {
"ragflow-mcp-server": {
"command": "uvx",
"args": [
"ragflow-mcp-server",
"--api-key=ragflow-dhMzViYzJlMTM1NjExZjBiNWU5MDI0Mm",
"--base-url=http://172.16.33.66:8060"
]
}
}
}
Continue
config.yaml
mcpServers:
- name: RAGFlow Server
command: uvx
args:
- ragflow-mcp-server
- --api-key
- ragflow-dhMzViYzJlMTM1NjExZjBiNWU5MDI0Mm
- --base-url
- http://172.16.33.66:8060
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Development/Unpublished Servers Configuration
``` "mcpServers": { "ragflow-mcp-server": { "command": "uv", "args": [ "--directory", "/Users/junjian/GitHub/wang-junjian/ragflow-mcp-server", "run", "ragflow-mcp-server" ] } } ```Published Servers Configuration
``` "mcpServers": { "ragflow-mcp-server": { "command": "uvx", "args": [ "ragflow-mcp-server" ] } } ```Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/
directory.
- Publish to PyPI:
uv publish
Note: You'll need to set PyPI credentials via environment variables or command flags:
- Token:
--token
orUV_PUBLISH_TOKEN
- Or username/password:
--username
/UV_PUBLISH_USERNAME
and--password
/UV_PUBLISH_PASSWORD
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm
with this command:
npx @modelcontextprotocol/inspector \
uv --directory /Users/junjian/GitHub/wang-junjian/ragflow-mcp-server \
run ragflow-mcp-server \
--api-key ragflow-dhMzViYzJlMTM1NjExZjBiNWU5MDI0Mm \
--base-url http://172.16.33.66:8060
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Reviews

user_g8i4Ngbf
I've been using ragflow-mcp-server by wang-junjian and I'm thoroughly impressed! The seamless integration and robust performance make it a standout. The documentation provided in the GitHub link is clear and helpful, allowing for easy setup and usage. Highly recommend for anyone in need of a reliable MCP server solution!