Confidential guide on numerology and astrology, based of GG33 Public information

AWS-Common-MCP-Servers
Servidores MCP desplegables para servicios comunes de AWS (ubicación, S3, AURORA PG DATA API) utilizando AWS CDK.
3 years
Works with Finder
1
Github Watches
0
Github Forks
1
Github Stars
AWS Common MCP Servers with CDK Deployment
This project provides deployable Model Context Protocol (MCP) servers for common AWS services, along with AWS Cloud Development Kit (CDK) code (Python) to provision the necessary infrastructure for running these servers, typically on ECS Fargate.
The goal is to offer reusable components that AI developers (e.g., using Amazon Bedrock, LangChain) can easily deploy into their AWS accounts to interact with AWS services through the standardized MCP interface.
Included MCP Servers
- AWS Location Service: (TypeScript) Exposes functionalities like searching places, getting place details, calculating routes, etc. Based on the aws-location-server.
- Amazon S3: (Python) Provides tools for basic S3 operations like listing buckets/objects, getting, putting, and deleting objects.
- Amazon Aurora PostgreSQL (via RDS Data API): (Python) Allows executing SQL statements against a specified Aurora PostgreSQL cluster using the secure RDS Data API.
Prerequisites
- AWS Account
- AWS CLI configured locally with appropriate permissions (for CDK deployment). Credentials should be set up via
~/.aws/credentials
or environment variables. - Node.js and npm (for the Location Service server build process and CDK)
- Python 3.9+ (for CDK and Python-based MCP servers)
- AWS CDK CLI (
npm install -g aws-cdk
) - Docker (running locally for CDK to build container images)
- Git
Specific Prerequisites for Aurora PostgreSQL Data API Server:
- An existing Aurora PostgreSQL-Compatible cluster running in your target AWS region.
- The cluster must have the RDS Data API enabled.
- An AWS Secrets Manager secret containing the database credentials (username, password) for the cluster. The ARN of this secret is required for deployment.
Project Structure
aws-mcp-infra/
├── mcp_servers/ # Source code for the MCP servers
│ ├── location_service/ # TypeScript server for AWS Location Service
│ ├── s3/ # Python server for S3
│ └── aurora_pg_data_api/ # Python server for Aurora PG Data API
├── cdk_deployment/ # AWS CDK code (Python)
│ ├── app.py # CDK App entry point
│ ├── cdk.json # CDK configuration
│ ├── requirements.txt # CDK Python dependencies
│ └── aws_mcp_infra/ # CDK Stack definitions
│ ├── __init__.py
│ ├── location_service_stack.py
│ ├── s3_stack.py
│ └── aurora_pg_data_api_stack.py
├── .gitignore
└── README.md # This file
Deployment
-
Clone the Repository:
git clone https://github.com/vAirpower/aws-common-mcp-servers.git cd aws-common-mcp-servers
-
Configure Aurora Prerequisites (if deploying Aurora server):
- Ensure your Aurora PostgreSQL cluster exists and has the Data API enabled.
- Create a secret in AWS Secrets Manager (same region as deployment) containing the DB credentials (e.g., keys
username
,password
). - Update the
db_cluster_arn
anddb_secret_arn
variables incdk_deployment/aws_mcp_infra/aurora_pg_data_api_stack.py
with your specific cluster ARN and the ARN of the secret you created.
-
Install CDK Dependencies:
cd cdk_deployment python3 -m venv .venv source .venv/bin/activate pip install -r requirements.txt
-
Bootstrap CDK (if first time using CDK in this account/region):
cdk bootstrap aws://ACCOUNT-NUMBER/REGION # Replace with your AWS account number and region
-
Deploy Stacks: Deploy all stacks (creates VPC, Cluster, and all three services):
Or deploy specific stacks:cdk deploy --all --require-approval never
cdk deploy LocationServiceMcpStack S3McpStack AuroraPgDataApiMcpStack --require-approval never
Deployment will build the Docker images for each server, push them to ECR repositories created by CDK, and provision the ECS Fargate services.
Usage
Once deployed, the MCP servers run as tasks within ECS Fargate services. They are not publicly exposed by default. Interaction typically occurs from within your AWS environment:
-
From Lambda Functions / Bedrock Agents: Use the AWS SDK (e.g.,
boto3
for Python) to invoke the ECS tasks or potentially interact via AWS Systems Manager Session Manager (if configured). The exact mechanism depends on how the client application is designed to communicate with MCP servers running in ECS. -
Local Testing (Requires Adaptation): To test these servers locally before deployment, you would typically run them directly (
node build/index.js
orpython aurora_pg_data_api_server.py
) after installing their respective dependencies (npm install
orpip install -r requirements.txt
) and ensuring your local environment has AWS credentials configured. For the Aurora server, you'd also need to set theDB_CLUSTER_ARN
andDB_SECRET_ARN
environment variables locally.
Cleanup
To remove all deployed resources, run:
cd cdk_deployment
source .venv/bin/activate
cdk destroy --all
相关推荐
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Servidores AWS MCP: servidores MCP especializados que traen las mejores prácticas de AWS directamente a su flujo de trabajo de desarrollo
Reviews

user_iruabNst
I'm thoroughly impressed with the aws-common-mcp-servers by vAirpower. This tool has streamlined my AWS management and MCP applications exceptionally well. The user interface is intuitive, and the setup was straightforward. It offers robust functionality, making server management hassle-free. Highly recommend checking it out on GitHub!