Cover image
Try Now
2025-04-11

Complete Sandbox para aumentar la inferencia de LLM (local o nube) con MCP Client-Server. Bed de prueba de baja fricción para la validación del servidor MCP y la evaluación de agente.

3 years

Works with Finder

1

Github Watches

0

Github Forks

1

Github Stars

MCP Client-Server Sandbox for LLM Augmentation

Development Status License

Overview

Under Development

mcp-scaffold is a minimal sandbox for validating Model Context Protocol (MCP) servers against a working LLM client and live chat interface. The aim is minimal friction when plugging in new MCP Servers and evaluating LLM behavior.

At first a local LLM, such as LLaMA 7B is used for local network only testing capabilties. Next, cloud inference will be supported, so devs can use more powerful models for validation without complete local network sandboxing. LLaMA 7B is large (~13GB in common HF format), however, smaller models lack the conversational ability essential for validating MCP augmentation. That said, LLaMA 7b is a popular local LLM Inference model with over 1.3m downloads last month (Mar 2025).

With chatbox UI, LLM inference options in place, MCP Client and a couple demo MCP servers will be added. This project serves as both a reference architecture and a practical development environment, evolving alongside the MCP specification.

Architecture

MCP Architecture

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • av
  • Ejecute sin esfuerzo LLM Backends, API, frontends y servicios con un solo comando.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

    Reviews

    5 (1)
    Avatar
    user_IGwZqoPm
    2025-04-17

    As a dedicated user of mcp-llm-sandbox, I am genuinely impressed by its capabilities. The ease of setting up and seamless integration provided by tmcarmichael makes it a standout tool. The repository found at https://github.com/tmcarmichael/mcp-scaffold is well-documented, making onboarding straightforward even for newcomers. Highly recommend it for anyone looking to leverage powerful language models efficiently!