
A2-Go
A2A -go es una implementación de referencia GO del protocolo de agente a agente (A2A) por Google, incluida la interoperabilidad propuesta con el protocolo de contexto del modelo (MCP) de antrópico.
3 years
Works with Finder
0
Github Watches
0
Github Forks
0
Github Stars
🌈 A2A‑Go
"Combine A2A and MCP to create advanced agentic systems!"
a2a‑go is a reference Go implementation of the Agent‑to‑Agent (A2A) protocol by Google, including the proposed interoperability with the Model Context Protocol (MCP).
🚧 Work in progress 🚧 Consider this project a proof of concept at best, and subject to sudden changes.
✨ Features
Agent‑to‑Agent (A2A) protocol implementation
- Send Task to send a new task to an agent
- Get Task to retrieve a task by ID 🔜
- Cancel Task to cancel a task 🔜
- Stream Task to stream the task results 🔜
- Set Push Notification to configure push notifications for a task 🔜
- Get Push Notification to retrieve the push notification configuration for a task 🔜
- Structured Outputs to return structured data from an agent
- Fine‑tuning to fine‑tune an agent on a dataset
- Image Generation to generate images with an agent
- Audio Transcription to transcribe audio
- Text‑to‑Speech to convert text to speech
Model Context Protocol (MCP) interoperability
- Tool Calling to call tools and receive the results
- List Prompts to retrieve a list of prompts from an agent 🔜
- Get Prompt to retrieve a prompt by ID 🔜
- Set Prompt to create or update a prompt 🔜
- Delete Prompt to delete a prompt by ID 🔜
- List Resources to retrieve a list of resources from an agent 🔜
- Get Resource to retrieve a resource by ID 🔜
- Set Resource to create or update a resource 🔜
- Delete Resource to delete a resource by ID 🔜
- Sampling to sample a task from an agent 🔜
- Roots to get the root task for a task 🔜
Built‑in tools
- Browser to browse the web 🔜
- Docker to run Docker commands 🔜
- GitHub to search GitHub 🔜
- Memory to store and retrieve memories 🔜
- Qdrant to store and retrieve vectors 🔜
- Neo4j to store and retrieve graph data 🔜
🚀 Quick Start
Run the docker-compose.yml
for a full distributed system, demonstrating
A2A and MCP interoperability.
docker compose up
To run individual, more contained examples, use the example
cli command.
a2a-go example <example-name>
Add the --interactive
flag to run the example in interactive mode.
a2a-go example <example-name> --interactive
All example code lives in the examples
directory.
相关推荐
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
⛓️Rulego es un marco de motor de regla de orquestación de componentes de alta generación de alto rendimiento, de alto rendimiento y de alto rendimiento para GO.
Traducción de papel científico en PDF con formatos preservados - 基于 Ai 完整保留排版的 PDF 文档全文双语翻译 , 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 支持 等服务 等服务 等服务 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 提供 cli/mcp/docker/zotero
Cree fácilmente herramientas y agentes de LLM utilizando funciones Plain Bash/JavaScript/Python.
😎简单易用、🧩丰富生态 - 大模型原生即时通信机器人平台 | 适配 Qq / 微信(企业微信、个人微信) / 飞书 / 钉钉 / Discord / Telegram / Slack 等平台 | 支持 Chatgpt 、 Deepseek 、 DiFy 、 Claude 、 Gemini 、 Xai 、 PPIO 、 Ollama 、 LM Studio 、阿里云百炼、火山方舟、 Siliconflow 、 Qwen 、 Moonshot 、 Chatglm 、 SillyTraven 、 MCP 等 LLM 的机器人 / Agente | Plataforma de bots de mensajería instantánea basada en LLM, admite Discord, Telegram, WeChat, Lark, Dingtalk, QQ, Slack
Iniciar aplicaciones de múltiples agentes empoderadas con Building LLM de manera más fácil.
Reviews

user_ZBDcKxGW
As a devoted user of the mcp application, I find a2a-go by TheApeMachine to be incredibly effective. This product streamlines my workflow, making it hassle-free to manage tasks. The user interface is intuitive, and the functionality aligns perfectly with my daily needs. Highly recommend for anyone looking to boost their productivity!