Cover image
Try Now
2025-04-04

🚀 OpenClient: ¡el conector de aplicación AI universal basado en CLI! Una implementación del protocolo de contexto del modelo de código abierto (MCP) que turboaliza LLMS por estandarización de aprovisionamiento de contexto. Conecte rápidamente un servidor de su elección con nuestro cliente para aumentar sus capacidades de IA. ¡Ideal para desarrolladores que crean aplicaciones de IA de próxima generación!

3 years

Works with Finder

1

Github Watches

0

Github Forks

0

Github Stars

Model Context Protocol (MCP)

MCP is an open protocol that standardizes how applications provide context to LLMs - think of it like USB-C for AI applications. It enables seamless connection between AI models and various data sources/tools.

🔌 Why MCP?

MCP helps build agents and complex workflows on top of LLMs by providing:

  • Pre-built integrations for your LLM to plug into
  • Flexibility to switch between LLM providers
  • Secure data handling best practices
  • Standardized interface for AI applications

🏗️ Core Components

flowchart LR
    A[MCP Host] --> B[MCP Client]
    B --> C[Terminal]
    B --> D[Filesystem]
    B --> E[Memory]
    C --> F[Local Data]
    D --> G[Local Files]
    E --> H[Remote APIs]
  1. MCP Hosts: Applications (like Claude Desktop, IDEs) that need AI context
  2. MCP Clients: Protocol handlers that manage server connections
  3. MCP Servers: Lightweight programs exposing specific capabilities:
    • Terminal Server: Execute commands
    • Filesystem Server: Access local files
    • Memory Server: Persistent data storage
  4. Data Sources:
    • Local: Files, databases on your machine
    • Remote: Web APIs and cloud services

🚀 System Overview

flowchart LR
    User --> Client
    Client --> AI[AI Processing]
    Client --> Terminal[Terminal]
    Client --> Filesystem[Filesystem]
    Client --> Memory[Memory]

Core Components:

  • AI Processing: Google Gemini + LangChain for natural language understanding
  • Terminal Server: Executes system commands in isolated workspace
  • Filesystem Server: Manages file operations
  • Memory Server: Stores and retrieves persistent data

Key Features:

  • Automatic server startup as needed
  • Secure workspace isolation
  • Flexible configuration
  • Extensible architecture

📂 File Structure

flowchart TD
    A[mcp] --> B[clients]
    A --> C[servers]
    A --> D[workspace]
    
    B --> E[mcp-client]
    E --> F[main.py]
    E --> G[client.py]
    E --> H[config.json]
    E --> I[.env]
    
    C --> J[terminal]
    J --> K[server.py]
    
    D --> L[memory.json]
    D --> M[notes.txt]

Key Files:

  • clients/mcp-client/main.py: Main client entry point
  • clients/mcp-client/langchain_mcp_client_wconfig.py: AI integration
  • clients/mcp-client/theailanguage_config.json: Server configurations
  • clients/mcp-client/.env: Environment variables
  • servers/terminal_server/terminal_server.py: Terminal server
  • workspace/memory.json: Persistent memory storage
  • workspace/notes.txt: System notes

File Type Breakdown:

  • Python Files (60%):

    • Core application logic and business rules
    • Server implementations and client applications
    • Includes both synchronous and asynchronous code
    • Follows PEP 8 style guidelines
  • JSON Files (20%):

    • Configuration files for servers and services
    • API request/response schemas
    • Persistent data storage format
    • Strict schema validation enforced
  • Text Files (15%):

    • System documentation (READMEs, guides)
    • Developer notes and annotations
    • Temporary data storage
    • Plaintext logs and outputs
  • Other Formats (5%):

    • Environment files (.env)
    • Git ignore patterns
    • License information
    • Build configuration files

🔌 Client Components

flowchart TD
    A[User Input] --> B[Client]
    B --> C{Type?}
    C -->|Command| D[Terminal]
    C -->|File| E[Filesystem]
    C -->|Memory| F[Storage]
    C -->|AI| G[Gemini]
    D --> H[Response]
    E --> H
    F --> H
    G --> H
    H --> I[Output]

Main Client Files:

  • langchain_mcp_client_wconfig.py: Main client application
  • theailanguage_config.json: Server configurations
  • .env: Environment variables

Key Features:

  • Manages multiple MCP servers
  • Integrates Google Gemini for natural language processing
  • Handles dynamic response generation
  • Processes LangChain objects

Configuration:

  1. theailanguage_config.json:
{
  "mcpServers": {
    "terminal_server": {
      "command": "uv",
      "args": ["run", "../../servers/terminal_server/terminal_server.py"]
    },
    "memory": {
      "command": "npx.cmd",
      "args": ["@modelcontextprotocol/server-memory"],
      "env": {"MEMORY_FILE_PATH": "workspace/memory.json"}
    }
  }
}
  1. .env Setup:
GOOGLE_API_KEY=your_api_key_here
THEAILANGUAGE_CONFIG=clients/mcp-client/theailanguage_config.json

Setup Steps:

  1. Create .env file in clients/mcp-client/
  2. Add required variables
  3. Restart client after changes

🖥️ Server Components

classDiagram
    class TerminalServer {
        +path: String
        +run()
        +validate() 
        +execute()
    }
    TerminalServer --|> FastMCP
    class FastMCP {
        +decorate()
        +transport()
    }

Terminal Server

  • Purpose: Executes system commands in isolated workspace
  • Key Features:
    • Fast command execution
    • Secure workspace isolation
    • Comprehensive logging
  • Technical Details:
    • Uses FastMCP for transport
    • Validates commands before execution
    • Captures and returns output

Workspace Files

memory.json

  • Purpose: Persistent data storage
  • Operations:
    • Store/update/read data
    • Query specific information
  • Example Structure:
{
  "user_preferences": {
    "favorite_color": "blue",
    "interests": ["science fiction"]
  },
  "system_state": {
    "last_commands": ["git status", "ls"]
  }
}

notes.txt

  • Purpose: System documentation and notes
  • Content Types:
    • User documentation (40%)
    • System notes (30%)
    • Temporary data (20%)
    • Other (10%)

🛠️ Local Setup Guide

Prerequisites

  • Python 3.9+
  • Node.js 16+
  • Google API Key
  • UV Package Manager

Installation Steps

  1. Clone the repository:

    git clone https://github.com/Techiral/mcp.git
    cd mcp
    
  2. Set up Python environment:

    python -m venv venv
    # Linux/Mac:
    source venv/bin/activate
    # Windows:
    venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Configure environment variables:

    echo "GOOGLE_API_KEY=your_key_here" > clients/mcp-client/.env
    echo "THEAILANGUAGE_CONFIG=clients/mcp-client/theailanguage_config.json" >> clients/mcp-client/.env
    
  4. Install Node.js servers:

    npm install -g @modelcontextprotocol/server-memory @modelcontextprotocol/server-filesystem
    

Verification Checklist:

  • Repository cloned
  • Python virtual environment created and activated
  • Python dependencies installed
  • .env file configured
  • Node.js servers installed

🚀 Usage Instructions

Basic Usage

  1. Start the client:
python clients/mcp-client/langchain_mcp_client_wconfig.py
  1. Type natural language requests and receive responses

Command Examples

File Operations:

Create a file named example.txt
Search for "function" in all Python files
Count lines in main.py

Web Content:

Summarize https://example.com
Extract headlines from news site

System Commands:

List files in current directory
Check Python version
Run git status

Memory Operations:

Remember my favorite color is blue
What preferences did I set?
Show recent commands

Server Configuration

Key Configuration Files:

  • theailanguage_config.json: Main server configurations
  • .env: Environment variables

Example Server Configs:

{
  "terminal_server": {
    "command": "uv",
    "args": ["run", "servers/terminal_server/terminal_server.py"]
  },
  "memory": {
    "command": "npx.cmd",
    "args": ["@modelcontextprotocol/server-memory"],
    "env": {"MEMORY_FILE_PATH": "workspace/memory.json"}
  }
}

Configuration Tips:

  • Use absolute paths for reliability
  • Set environment variables for sensitive data
  • Restart servers after configuration changes

🛠️ Troubleshooting

Common Issues & Solutions:

  1. Authentication Problems:

    • Verify Google API key in .env
    • Check key has proper permissions
    • Regenerate key if needed
  2. File Operations Failing:

    # Check permissions
    ls -la workspace/
    
    # Restart filesystem server
    npx @modelcontextprotocol/inspector uvx mcp-server-filesystem
    
  3. Memory Operations Failing:

    # Verify memory.json exists
    ls workspace/memory.json
    
    # Restart memory server
    npx @modelcontextprotocol/server-memory
    

Debugging Tools:

  • Enable verbose logging:
    echo "LOG_LEVEL=DEBUG" >> clients/mcp-client/.env
    
  • List running servers:
    npx @modelcontextprotocol/inspector list
    

Support:

🤝 How to Contribute

Getting Started:

  1. Fork and clone the repository
  2. Set up development environment (see Local Setup Guide)

Development Workflow:

# Create feature branch
git checkout -b feature/your-feature

# Make changes following:
# - Python: PEP 8 style
# - JavaScript: StandardJS style
# - Document all new functions

# Run tests
python -m pytest tests/

# Push changes
git push origin feature/your-feature

Pull Requests:

  • Reference related issues
  • Describe changes clearly
  • Include test results
  • Squash commits before merging

Code Review:

  • Reviews typically within 48 hours
  • Address all feedback before merging

Recommended Setup:

  • VSCode with Python/JS extensions
  • Docker for testing
  • Pre-commit hooks

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • https://zenepic.net
  • Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • JackKuo666
  • 🔍 Habilitar asistentes de IA para buscar y acceder a la información del paquete PYPI a través de una interfaz MCP simple.

  • av
  • Ejecute sin esfuerzo LLM Backends, API, frontends y servicios con un solo comando.

    Reviews

    1 (1)
    Avatar
    user_InzGNkVI
    2025-04-17

    I've been using MCP by Techiral for months, and it has significantly streamlined my development workflow. Its user-friendly interface, robust functionalities, and seamless integration capabilities are unparalleled. I highly recommend checking it out at the official GitHub project page.