Confidential guide on numerology and astrology, based of GG33 Public information

Spring-Aai-MCP
Java SDK pour le protocole de contexte du modèle (MCP), fournissant une intégration transparente entre les applications Java et Spring et les modèles et outils AI conformes à MCP.
3 years
Works with Finder
7
Github Watches
24
Github Forks
151
Github Stars
NOTE: This project has been graduated and moved to the MCP Java SDK and Spring AI MCP. See you there! This repository is now archived.
Java & Spring MCP
Set of projects that provide Java SDK and Spring Framework integration for the Model Context Protocol. It enables Java applications to interact with AI models and tools through a standardized interface, supporting both synchronous and asynchronous communication patterns.
📚 Reference Documentation
For comprehensive guides and API documentation, visit the Spring AI MCP Reference Documentation.


Projects
MCP Java SDK
Java implementation of the Model Context Protocol specification. It includes:
- Synchronous and asynchronous MCP Client and MCP Server implementations
- Standard MCP operations support (tool discovery, resource management, prompt handling, structured logging). Support for request and notification handling.
- Stdio and SSE transport implementations.
MCP Transports
Core Transports
- Stdio-based (
StdioClientTransport
,StdioServerTransport
) for process-based communication - Java HttpClient-based SSE client (
HttpClientSseClientTransport
) for HTTP streaming - Servlet-based SSE server (
HttpServletSseServerTransport
) for HTTP SSE Server streaming using traditional Servlet API
Optional SSE Transports
- WebFlux SSE Transport - Reactive HTTP streaming with Spring WebFlux (Client & Server)
-
WebMvc SSE Transport - Spring MVC based HTTP SSE transport (Server only).
You can use the core
HttpClientSseClientTransport
transport as a SSE client.
Spring AI MCP
The Spring integration module provides Spring-specific functionality:
- Integration with Spring AI's function calling system
- Spring-friendly abstractions for MCP clients
- Auto-configurations (WIP)
Installation
Add the following dependencies to your Maven project:
<!-- Core MCP -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>mcp</artifactId>
</dependency>
<!-- Optional: WebFlux SSE transport -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>mcp-webflux-sse-transport</artifactId>
</dependency>
<!-- Optional: WebMVC SSE transport -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>mcp-webmvc-sse-transport</artifactId>
</dependency>
<!-- Optional: Spring AI integration -->
<dependency>
<groupId>org.springframework.experimental</groupId>
<artifactId>spring-ai-mcp</artifactId>
</dependency>
This is a milestone release, not available on Maven Central. Add this repository to your POM:
<repositories>
<repository>
<id>spring-milestones</id>
<name>Spring Milestones</name>
<url>https://repo.spring.io/milestone</url>
<snapshots>
<enabled>false</enabled>
</snapshots>
</repository>
</repositories>
Reffer to the Dependency Management page for more information.
Example Demos
Explore these MCP examples in the spring-ai-examples/model-context-protocol repository:
- SQLite Simple - Demonstrates LLM integration with a database
- SQLite Chatbot - Interactive chatbot with SQLite database interaction
- Filesystem - Enables LLM interaction with local filesystem folders and files
- Brave - Enables natural language interactions with Brave Search, allowing you to perform internet searches.
- Theme Park API Example - Shows how to create an MCP server and client with Spring AI, exposing Theme Park API tools
- Http SSE Client + WebMvc SSE Server - Showcases how to create and use MCP WebMvc servers and HttpClient clients with different capabilities.
- WebFlux SSE Client + WebFlux SSE Server - Showcases how to create and use MCP WebFlux servers and clients with different capabilities
- HttpClient SSE Client + Servlet SSE Server - Showcases how to create and use MCP Servlet SSE Server and HttpClient SSE Client with different capabilities
Documentation
Development
- Building from Source
mvn clean install
- Running Tests
mvn test
Contributing
This is an experimental Spring project. Contributions are welcome! Please:
- Fork the repository
- Create a feature branch
- Submit a Pull Request
Team
- Christian Tzolov
- Dariusz Jędrzejczyk
Links
License
This project is licensed under the Apache License 2.0.
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.
Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)
Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle
🔥 1Panel fournit une interface Web intuitive et un serveur MCP pour gérer des sites Web, des fichiers, des conteneurs, des bases de données et des LLM sur un serveur Linux.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Serveurs MCP géniaux - une liste organisée de serveurs de protocole de contexte de modèle
Activer les clients adjoints AI comme Cursor, Windsurf et Claude Desktop pour contrôler le moteur Unreal à travers le langage naturel à l'aide du Protocole de contexte modèle (MCP).
Serveurs AWS MCP - Serveurs MCP spécialisés qui apportent les meilleures pratiques AWS directement à votre flux de travail de développement
Reviews

user_EihCSbEM
As a dedicated user of Spring-AI-MCP, I am thoroughly impressed by its capabilities. The seamless integration and intuitive features truly enhance my AI projects. The author's focus on delivering a reliable and efficient framework is evident. Highly recommend for anyone looking to streamline their machine learning workflows. Fantastic work by Spring-Projects-Experimental!