Confidential guide on numerology and astrology, based of GG33 Public information

MCP-Knowledge-Graph
MCP Server permettant une mémoire persistante pour Claude via un graphique de connaissances local - Fork axé sur le développement local
3 years
Works with Finder
3
Github Watches
30
Github Forks
135
Github Stars
Knowledge Graph Memory Server
An improved implementation of persistent memory using a local knowledge graph with a customizable --memory-path
.
This lets Claude remember information about the user across chats.
[!NOTE] This is a fork of the original Memory Server and is intended to not use the ephemeral memory npx installation method.
Server Name
mcp-knowledge-graph
Core Concepts
Entities
Entities are the primary nodes in the knowledge graph. Each entity has:
- A unique name (identifier)
- An entity type (e.g., "person", "organization", "event")
- A list of observations
Example:
{
"name": "John_Smith",
"entityType": "person",
"observations": ["Speaks fluent Spanish"]
}
Relations
Relations define directed connections between entities. They are always stored in active voice and describe how entities interact or relate to each other.
Example:
{
"from": "John_Smith",
"to": "Anthropic",
"relationType": "works_at"
}
Observations
Observations are discrete pieces of information about an entity. They are:
- Stored as strings
- Attached to specific entities
- Can be added or removed independently
- Should be atomic (one fact per observation)
Example:
{
"entityName": "John_Smith",
"observations": [
"Speaks fluent Spanish",
"Graduated in 2019",
"Prefers morning meetings"
]
}
API
Tools
-
create_entities
- Create multiple new entities in the knowledge graph
- Input:
entities
(array of objects)- Each object contains:
-
name
(string): Entity identifier -
entityType
(string): Type classification -
observations
(string[]): Associated observations
-
- Each object contains:
- Ignores entities with existing names
-
create_relations
- Create multiple new relations between entities
- Input:
relations
(array of objects)- Each object contains:
-
from
(string): Source entity name -
to
(string): Target entity name -
relationType
(string): Relationship type in active voice
-
- Each object contains:
- Skips duplicate relations
-
add_observations
- Add new observations to existing entities
- Input:
observations
(array of objects)- Each object contains:
-
entityName
(string): Target entity -
contents
(string[]): New observations to add
-
- Each object contains:
- Returns added observations per entity
- Fails if entity doesn't exist
-
delete_entities
- Remove entities and their relations
- Input:
entityNames
(string[]) - Cascading deletion of associated relations
- Silent operation if entity doesn't exist
-
delete_observations
- Remove specific observations from entities
- Input:
deletions
(array of objects)- Each object contains:
-
entityName
(string): Target entity -
observations
(string[]): Observations to remove
-
- Each object contains:
- Silent operation if observation doesn't exist
-
delete_relations
- Remove specific relations from the graph
- Input:
relations
(array of objects)- Each object contains:
-
from
(string): Source entity name -
to
(string): Target entity name -
relationType
(string): Relationship type
-
- Each object contains:
- Silent operation if relation doesn't exist
-
read_graph
- Read the entire knowledge graph
- No input required
- Returns complete graph structure with all entities and relations
-
search_nodes
- Search for nodes based on query
- Input:
query
(string) - Searches across:
- Entity names
- Entity types
- Observation content
- Returns matching entities and their relations
-
open_nodes
- Retrieve specific nodes by name
- Input:
names
(string[]) - Returns:
- Requested entities
- Relations between requested entities
- Silently skips non-existent nodes
Usage with Claude Desktop
Setup
Add this to your claude_desktop_config.json:
{
"mcpServers": {
"memory": {
"command": "npx",
"args": [
"-y",
"@modelcontextprotocol/server-memory"
]
}
}
}
Custom Memory Path
You can specify a custom path for the memory file:
{
"mcpServers": {
"memory": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-memory", "--memory-path", "/path/to/your/memory.jsonl"]
}
}
}
If no path is specified, it will default to memory.jsonl in the server's installation directory.
System Prompt
The prompt for utilizing memory depends on the use case. Changing the prompt will help the model determine the frequency and types of memories created.
Here is an example prompt for chat personalization. You could use this prompt in the "Custom Instructions" field of a Claude.ai Project.
Follow these steps for each interaction:
1. User Identification:
- You should assume that you are interacting with default_user
- If you have not identified default_user, proactively try to do so.
2. Memory Retrieval:
- Always begin your chat by saying only "Remembering..." and retrieve all relevant information from your knowledge graph
- Always refer to your knowledge graph as your "memory"
3. Memory
- While conversing with the user, be attentive to any new information that falls into these categories:
a) Basic Identity (age, gender, location, job title, education level, etc.)
b) Behaviors (interests, habits, etc.)
c) Preferences (communication style, preferred language, etc.)
d) Goals (goals, targets, aspirations, etc.)
e) Relationships (personal and professional relationships up to 3 degrees of separation)
4. Memory Update:
- If any new information was gathered during the interaction, update your memory as follows:
a) Create entities for recurring organizations, people, and significant events
b) Connect them to the current entities using relations
b) Store facts about them as observations
License
This MCP server is licensed under the MIT License. This means you are free to use, modify, and distribute the software, subject to the terms and conditions of the MIT License. For more details, please see the LICENSE file in the project repository.
相关推荐
Advanced software engineer GPT that excels through nailing the basics.
I find academic articles and books for research and literature reviews.
Take an adjectivised noun, and create images making it progressively more adjective!
Embark on a thrilling diplomatic quest across a galaxy on the brink of war. Navigate complex politics and alien cultures to forge peace and avert catastrophe in this immersive interstellar adventure.
Delivers concise Python code and interprets non-English comments
La communauté du curseur et de la planche à voile, recherchez des règles et des MCP
MCP Server pour récupérer le contenu de la page Web à l'aide du navigateur sans tête du dramwright.
Un puissant plugin Neovim pour gérer les serveurs MCP (Protocole de contexte modèle)
Pont entre les serveurs Olllama et MCP, permettant aux LLM locaux d'utiliser des outils de protocole de contexte de modèle
🔥 1Panel fournit une interface Web intuitive et un serveur MCP pour gérer des sites Web, des fichiers, des conteneurs, des bases de données et des LLM sur un serveur Linux.
L'application tout-en-un desktop et Docker AI avec chiffon intégré, agents AI, constructeur d'agent sans code, compatibilité MCP, etc.
Serveurs MCP géniaux - une liste organisée de serveurs de protocole de contexte de modèle
Activer les clients adjoints AI comme Cursor, Windsurf et Claude Desktop pour contrôler le moteur Unreal à travers le langage naturel à l'aide du Protocole de contexte modèle (MCP).
Serveurs AWS MCP - Serveurs MCP spécialisés qui apportent les meilleures pratiques AWS directement à votre flux de travail de développement
Reviews

user_EpgeSQp8
I have been using the mcp-knowledge-graph by shaneholloman from GitHub and it has exceeded my expectations. This tool is incredibly helpful for structuring and visualizing complex data relationships in any project. The setup is straightforward and the documentation is thorough, making it easy to get started quickly. Highly recommended for anyone needing a reliable knowledge graph solution!