
asistente de soporte de agente-ai-automotive
Un prototipo de IA que identifica y resuelve proactivamente los problemas del vehículo antes de que se cree un caso de soporte. Este sistema utiliza una arquitectura modular que cumple con MCP, la coordinación de múltiples agentes y el razonamiento basado en LLM para reducir la fricción del cliente y la carga de soporte.
3 years
Works with Finder
0
Github Watches
0
Github Forks
0
Github Stars
Agentic AI Automotive Support Assistant
An AI prototype that proactively identifies and resolves vehicle issues before a support case is created. This system uses a modular, MCP-compliant architecture, multi-agent coordination, and LLM-based reasoning to reduce customer friction and support load.
✨ Overview
When a customer taps "Help" in their mobile app or in-car head unit, this system launches a series of diagnostics and knowledge base lookups via multiple MCP servers. A reasoning agent then synthesizes these signals and either resolves the issue or escalates it with full context—without needing human intervention.
This prototype demonstrates:
- Agentic workflows with crew.ai
- Prompt evaluation with promptfoo
- Reasoning pipelines with LangChain
- Infrastructure-as-Code with AWS CDK (TypeScript)
- Orchestration using Model Context Protocol (MCP)
💡 Use Case
"Remote Start isn’t working" — before the user submits this as a support ticket, the assistant:
- Inspects recent user actions ("user tapped Remote Start 2x")
- Checks car configuration ("feature not yet enabled by user")
- Verifies subscription status ("remote services expired last week")
- Looks for outages ("known issue impacting 5G connectivity in US West region")
- Retrieves similar issues from knowledge base (via bedrock-kb-prototype)
- Summarizes a response to the user and recommends actions, or solves it.
🤖 Architecture
[ Mobile App / Head Unit (MCP Host) ]
|
[ MCP Client ]
|
-----------------------------
| | | |
[Config][Subscription][Outage][KnowledgeBase] ⇨ (MCP Servers)
|
[ crew.ai Agent Team ]
|
[ LangChain Planner Agent ]
|
[ LLM Summary to User ]
|
[ promptfoo Prompt Evaluation ]
🚀 Stack
Component | Tool |
---|---|
Orchestration | Model Context Protocol (MCP) |
Reasoning Engine | LangChain (local or Bedrock LLM) |
Agent Orchestration | crew.ai |
Prompt Engineering & Evaluation | promptfoo |
RAG Knowledge Base | bedrock-kb-prototype |
Infrastructure | AWS Lambda + API Gateway |
Model Hosting | Ollama / Bedrock / OpenRouter (pluggable) |
🔧 Setup
Coming soon: Full CDK + deployment instructions.
You can run LangChain logic + crew.ai planner locally and mock API Gateway inputs to simulate the MCP payload.
General Tutorial for Building Similar Projects:
- create a fresh GitHub repo
- create Amplify Gen 2 project from within the AWS Console and point it to fresh repo
- from CLI, run
npm create amplify@latest
in repo's root folder. -
git push
and check Amplify console to ensure that deployment worked.
🔹 Appendix: Ambient Computing Extension
Future evolution of this project will include passive telemetry + usage monitoring to detect and solve vehicle issues before the customer even opens the support app. This aligns with the concept of ambient computing and predictive support UX.
相关推荐
🔥 1Panel proporciona una interfaz web intuitiva y un servidor MCP para administrar sitios web, archivos, contenedores, bases de datos y LLM en un servidor de Linux.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
⛓️Rulego es un marco de motor de regla de orquestación de componentes de alta generación de alto rendimiento, de alto rendimiento y de alto rendimiento para GO.
Cree fácilmente herramientas y agentes de LLM utilizando funciones Plain Bash/JavaScript/Python.
😎简单易用、🧩丰富生态 - 大模型原生即时通信机器人平台 | 适配 Qq / 微信(企业微信、个人微信) / 飞书 / 钉钉 / Discord / Telegram / Slack 等平台 | 支持 Chatgpt 、 Deepseek 、 DiFy 、 Claude 、 Gemini 、 Xai 、 PPIO 、 Ollama 、 LM Studio 、阿里云百炼、火山方舟、 Siliconflow 、 Qwen 、 Moonshot 、 Chatglm 、 SillyTraven 、 MCP 等 LLM 的机器人 / Agente | Plataforma de bots de mensajería instantánea basada en LLM, admite Discord, Telegram, WeChat, Lark, Dingtalk, QQ, Slack
Iniciar aplicaciones de múltiples agentes empoderadas con Building LLM de manera más fácil.
Reviews

user_997SeqDk
The Agentic-AI Automotive Support Assistant by RoyCodes is an absolute game changer! This intelligent assistant is designed to enhance my automotive needs seamlessly. Its intuitive interface and efficient functionalities have significantly improved my support experience. Highly recommended for any car enthusiast or automotive professional looking for a reliable AI assistant.

user_JIizAt5V
As a devoted MCP user, I absolutely love the Agentic-AI Automotive Support Assistant by RoyCodes. It has revolutionized my driving experience with its seamless and intelligent support features. It easily integrates with my vehicle and provides real-time assistance, enhancing both safety and convenience. Highly recommend for all tech-savvy drivers!

user_d3EryXQ3
I've been using the agentic-ai-automotive-support-assistant by RoyCodes for a while, and it's been a game-changer! It integrates seamlessly into my workflow, offering accurate and prompt support for automotive queries. Highly recommend it for anyone in the automotive industry looking to enhance their support system with advanced AI capabilities.