
Hub MCP
MCP Hub es un marco integral para construir, administrar e implementar clientes y servidores del Protocolo de contexto del modelo (MCP). Proporciona herramientas y configuraciones para habilitar una integración y ejecución perfecta de flujos de trabajo MCP de extremo a extremo.
1
Github Watches
0
Github Forks
2
Github Stars
MCP Hub Documentation
Overview
MCP Hub is a framework for creating and managing Model Context Protocol (MCP) servers and clients. It leverages the uv
tool for fast package installation and configuration management.
Why Use UV?
UV simplifies package management and configuration with blazing-fast commands. Learn a few commands to get started, and you're good to go:
- Initialize a project:
uv init
- Sync Python version and dependencies:
uv sync
For more details, visit the UV GitHub repository.
Motivation
To understand the basics of MCP and get started with creating MCP servers, refer to the MCP Quickstart Server Guide.
Getting Started
How to Create a Sample MCP Server
-
Create a New Project Directory
uv init XYZ cd XYZ
-
Set Up a Virtual Environment
uv venv source .venv/bin/activate
-
Install Dependencies
uv add "mcp[cli]" httpx
-
Create the Server File
touch XYZ.py
How to Run the MCP Server
To run the server, use the following command:
uv run XYZ.py
Example: Creating a New XYZ Server
Follow the steps outlined above to create and run a new XYZ server. Replace XYZ
with your desired project name.
Recent Updates
Notebooks Directory
The notebooks/
directory has been added to the project. It includes configuration files and scripts for setting up and running JupyterHub. Key files include:
-
jupyterhub_config.py
: Configuration for JupyterHub. -
start_jupyterhub.sh
: Script to start the JupyterHub server.
CIFAR-10 Dataset Downloader
A new script has been added under ai/computer-vision/09_datasets/
to download the CIFAR-10 dataset using TensorFlow/Keras. To use it, run:
python ai/computer-vision/09_datasets/download_cifar10.py
This script downloads the dataset and prints a confirmation message.
AI Folder
The ai/
folder contains various subdirectories and scripts related to computer vision and artificial intelligence. Below is an overview of its structure and contents:
Subdirectories and Files
01_image_handling
-
basic_manipulations.py
: Basic image manipulation techniques. -
blue_image.png
: Sample image for testing. -
hello_cv.py
: A simple script to demonstrate computer vision basics. -
image_representation.py
: Explains image representation in computer vision. -
read_display_save.py
: Script to read, display, and save images. -
README.md
: Documentation for this subdirectory.
02_image_preprocessing
-
augmentation.py
: Image augmentation techniques. -
normalization.py
: Image normalization methods.
03_feature_extraction
-
hog_extraction.py
: Extracts Histogram of Oriented Gradients (HOG) features. -
sift_surf_extraction.py
: Demonstrates SIFT and SURF feature extraction.
04_basic_ml_concepts
-
hog_svm_classifier.py
: Implements a classifier using HOG features and SVM.
05_deep_learning_cnn
-
cnn_architecture.py
: Defines a Convolutional Neural Network (CNN) architecture.
06_image_classification
-
train_classifier.py
: Script to train an image classifier.
07_object_detection
-
basic_object_detection.py
: Demonstrates basic object detection techniques.
08_image_segmentation
-
basic_segmentation.py
: Explains basic image segmentation methods.
09_datasets
-
download_cifar10.py
: Script to download the CIFAR-10 dataset.
10_utils
-
image_utils.py
: Utility functions for image processing.
Additional Files
-
main.py
: Entry point for AI-related scripts. -
pyproject.toml
: Configuration file for the project. -
README.md
: Documentation for theai/
folder. -
run.sh
: Shell script to execute AI-related tasks. -
uv.lock
: Lock file for dependencies.
相关推荐
I find academic articles and books for research and literature reviews.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Reviews

user_xToihejl
As a dedicated user of the mcp-hub by reddy-sh, I am genuinely impressed by its functionality and seamless integration. The comprehensive documentation and user-friendly interface have significantly boosted my productivity. It's a must-have tool for any developer looking to streamline their workflow. Highly recommended!