Cover image
Try Now
2025-04-05

Ein MCP -Server für die Such -API von Tavily

3 years

Works with Finder

2

Github Watches

9

Github Forks

48

Github Stars

Tavily MCP Server

A Model Context Protocol server that provides AI-powered web search capabilities using Tavily's search API. This server enables LLMs to perform sophisticated web searches, get direct answers to questions, and search recent news articles with AI-extracted relevant content.

Features

Available Tools

  • tavily_web_search - Performs comprehensive web searches with AI-powered content extraction.

    • query (string, required): Search query
    • max_results (integer, optional): Maximum number of results to return (default: 5, max: 20)
    • search_depth (string, optional): Either "basic" or "advanced" search depth (default: "basic")
    • include_domains (list or string, optional): List of domains to specifically include in results
    • exclude_domains (list or string, optional): List of domains to exclude from results
  • tavily_answer_search - Performs web searches and generates direct answers with supporting evidence.

    • query (string, required): Search query
    • max_results (integer, optional): Maximum number of results to return (default: 5, max: 20)
    • search_depth (string, optional): Either "basic" or "advanced" search depth (default: "advanced")
    • include_domains (list or string, optional): List of domains to specifically include in results
    • exclude_domains (list or string, optional): List of domains to exclude from results
  • tavily_news_search - Searches recent news articles with publication dates.

    • query (string, required): Search query
    • max_results (integer, optional): Maximum number of results to return (default: 5, max: 20)
    • days (integer, optional): Number of days back to search (default: 3)
    • include_domains (list or string, optional): List of domains to specifically include in results
    • exclude_domains (list or string, optional): List of domains to exclude from results

Prompts

The server also provides prompt templates for each search type:

  • tavily_web_search - Search the web using Tavily's AI-powered search engine
  • tavily_answer_search - Search the web and get an AI-generated answer with supporting evidence
  • tavily_news_search - Search recent news articles with Tavily's news search

Prerequisites

  • Python 3.11 or later
  • A Tavily API key (obtain from Tavily's website)
  • uv Python package manager (recommended)

Installation

Option 1: Using pip or uv

# With pip
pip install mcp-tavily

# Or with uv (recommended)
uv add mcp-tavily

You should see output similar to:

Resolved packages: mcp-tavily, mcp, pydantic, python-dotenv, tavily-python [...]
Successfully installed mcp-tavily-0.1.4 mcp-1.0.0 [...]

Option 2: From source

# Clone the repository
git clone https://github.com/RamXX/mcp-tavily.git
cd mcp-tavily

# Create a virtual environment (optional but recommended)
python -m venv .venv
source .venv/bin/activate  # On Windows: .venv\Scripts\activate

# Install dependencies and build
uv sync  # Or: pip install -r requirements.txt
uv build  # Or: pip install -e .

# To install with test dependencies:
uv sync --dev  # Or: pip install -r requirements-dev.txt

During installation, you should see the package being built and installed with its dependencies.

Usage with VS Code

For quick installation, use one of the one-click install buttons below:

Install with UV in VS Code Install with UV in VS Code Insiders

For manual installation, add the following JSON block to your User Settings (JSON) file in VS Code. You can do this by pressing Ctrl + Shift + P and typing Preferences: Open User Settings (JSON).

Optionally, you can add it to a file called .vscode/mcp.json in your workspace. This will allow you to share the configuration with others.

Note that the mcp key is not needed in the .vscode/mcp.json file.

{
  "mcp": {
    "inputs": [
      {
        "type": "promptString",
        "id": "apiKey",
        "description": "Tavily API Key",
        "password": true
      }
    ],
    "servers": {
      "tavily": {
        "command": "uvx",
        "args": ["mcp-tavily"],
        "env": {
          "TAVILY_API_KEY": "${input:apiKey}"
        }
      }
    }
  }
}

Configuration

API Key Setup

The server requires a Tavily API key, which can be provided in three ways:

  1. Through a .env file in your project directory:

    TAVILY_API_KEY=your_api_key_here
    
  2. As an environment variable:

    export TAVILY_API_KEY=your_api_key_here
    
  3. As a command-line argument:

    python -m mcp_server_tavily --api-key=your_api_key_here
    

Configure for Claude.app

Add to your Claude settings:

"mcpServers": {
  "tavily": {
    "command": "python",
    "args": ["-m", "mcp_server_tavily"]
  },
  "env": {
    "TAVILY_API_KEY": "your_api_key_here"
  }
}

If you encounter issues, you may need to specify the full path to your Python interpreter. Run which python to find the exact path.

Usage Examples

For a regular web search:

Tell me about Anthropic's newly released MCP protocol

To generate a report with domain filtering:

Tell me about redwood trees. Please use MLA format in markdown syntax and include the URLs in the citations. Exclude Wikipedia sources.

To use answer search mode for direct answers:

I want a concrete answer backed by current web sources: What is the average lifespan of redwood trees?

For news search:

Give me the top 10 AI-related news in the last 5 days

Testing

The project includes a comprehensive test suite. To run the tests:

  1. Install test dependencies:

    source .venv/bin/activate  # If using a virtual environment
    uv sync --dev  # Or: pip install -r requirements-dev.txt
    
  2. Run the tests:

    ./tests/run_tests.sh
    

You should see output similar to:

============================= test session starts ==============================
collected 27 items

tests/test_models.py ................. [ 62%]
tests/test_utils.py ..... [ 81%]
tests/test_integration.py ..... [100%]

---------- coverage: platform darwin, python 3.13.2-final-0 ----------
Name                                Stmts   Miss  Cover
-------------------------------------------------------
src/mcp_server_tavily/__init__.py      16      2    88%
src/mcp_server_tavily/__main__.py       2      2     0%
src/mcp_server_tavily/server.py       137     80    42%
-------------------------------------------------------
TOTAL                                 155     84    46%


============================== 27 passed in 0.40s ==============================

The test suite includes tests for data models, utility functions, integration testing, error handling, and parameter validation. It focuses on verifying that all API capabilities work correctly, including handling of domain filters and various input formats.

Debugging

You can use the MCP inspector to debug the server:

# Using npx
npx @modelcontextprotocol/inspector python -m mcp_server_tavily

# For development
cd path/to/mcp-tavily
npx @modelcontextprotocol/inspector python -m mcp_server_tavily

Contributing

We welcome contributions to improve mcp-tavily! Here's how you can help:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Run tests to ensure they pass
  5. Commit your changes (git commit -m 'Add amazing feature')
  6. Push to the branch (git push origin feature/amazing-feature)
  7. Open a Pull Request

For examples of other MCP servers and implementation patterns, see: https://github.com/modelcontextprotocol/servers

License

mcp-tavily is licensed under the MIT License. See the LICENSE file for details.

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • 林乔安妮
  • A fashion stylist GPT offering outfit suggestions for various scenarios.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • pontusab
  • Die Cursor & Windsurf -Community finden Regeln und MCPs

  • av
  • Führen Sie mühelos LLM -Backends, APIs, Frontends und Dienste mit einem Befehl aus.

  • jae-jae
  • MCP -Server für den Fetch -Webseiteninhalt mit dem Headless -Browser von Dramatikern.

  • ravitemer
  • Ein leistungsstarkes Neovim -Plugin für die Verwaltung von MCP -Servern (Modellkontextprotokoll)

  • patruff
  • Brücke zwischen Ollama und MCP -Servern und ermöglicht es lokalen LLMs, Modellkontextprotokoll -Tools zu verwenden

  • 1Panel-dev
  • 🔥 1Panel bietet eine intuitive Weboberfläche und einen MCP -Server, um Websites, Dateien, Container, Datenbanken und LLMs auf einem Linux -Server zu verwalten.

  • Mintplex-Labs
  • Die All-in-One-Desktop & Docker-AI-Anwendung mit integriertem Lappen, AI-Agenten, No-Code-Agent Builder, MCP-Kompatibilität und vielem mehr.

  • GeyserMC
  • Eine Bibliothek für Kommunikation mit einem Minecraft -Client/Server.

    Reviews

    4 (1)
    Avatar
    user_b1cJGLn1
    2025-04-17

    I've been using mcp-tavily and absolutely love it! Created by RamXX, this tool is incredibly efficient and user-friendly. The interface is clean, and it has streamlined my workflow significantly. I highly recommend checking it out if you're looking for a reliable solution. More details can be found on their GitHub page.