Cover image
Try Now
2025-03-27

MCP (Modellkontextprotokoll) Server mit Llmling -Backend

3 years

Works with Finder

1

Github Watches

2

Github Forks

5

Github Stars

mcp-server-llmling

PyPI License Package status Daily downloads Weekly downloads Monthly downloads Distribution format Wheel availability Python version Implementation Releases Github Contributors Github Discussions Github Forks Github Issues Github Issues Github Watchers Github Stars Github Repository size Github last commit Github release date Github language count Github commits this week Github commits this month Github commits this year Package status Code style: black PyUp

Read the documentation!

LLMling Server Manual

Overview

mcp-server-llmling is a server for the Machine Chat Protocol (MCP) that provides a YAML-based configuration system for LLM applications.

LLMLing, the backend, provides a YAML-based configuration system for LLM applications. It allows to set up custom MCP servers serving content defined in YAML files.

  • Static Declaration: Define your LLM's environment in YAML - no code required
  • MCP Protocol: Built on the Machine Chat Protocol (MCP) for standardized LLM interaction
  • Component Types:
    • Resources: Content providers (files, text, CLI output, etc.)
    • Prompts: Message templates with arguments
    • Tools: Python functions callable by the LLM

The YAML configuration creates a complete environment that provides the LLM with:

  • Access to content via resources
  • Structured prompts for consistent interaction
  • Tools for extending capabilities

Key Features

1. Resource Management

  • Load and manage different types of resources:
    • Text files (PathResource)
    • Raw text content (TextResource)
    • CLI command output (CLIResource)
    • Python source code (SourceResource)
    • Python callable results (CallableResource)
    • Images (ImageResource)
  • Support for resource watching/hot-reload
  • Resource processing pipelines
  • URI-based resource access

2. Tool System

  • Register and execute Python functions as LLM tools
  • Support for OpenAPI-based tools
  • Entry point-based tool discovery
  • Tool validation and parameter checking
  • Structured tool responses

3. Prompt Management

  • Static prompts with template support
  • Dynamic prompts from Python functions
  • File-based prompts
  • Prompt argument validation
  • Completion suggestions for prompt arguments

4. Multiple Transport Options

  • Stdio-based communication (default)
  • Server-Sent Events (SSE) for web clients
  • Support for custom transport implementations

Usage

With Zed Editor

Add LLMLing as a context server in your settings.json:

{
  "context_servers": {
    "llmling": {
      "command": {
        "env": {},
        "label": "llmling",
        "path": "uvx",
        "args": [
          "mcp-server-llmling",
          "start",
          "path/to/your/config.yml"
        ]
      },
      "settings": {}
    }
  }
}

With Claude Desktop

Configure LLMLing in your claude_desktop_config.json:

{
  "mcpServers": {
    "llmling": {
      "command": "uvx",
      "args": [
        "mcp-server-llmling",
        "start",
        "path/to/your/config.yml"
      ],
      "env": {}
    }
  }
}

Manual Server Start

Start the server directly from command line:

# Latest version
uvx mcp-server-llmling@latest

1. Programmatic usage

from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer

async def main() -> None:
    async with RuntimeConfig.open(config) as runtime:
        server = LLMLingServer(runtime, enable_injection=True)
        await server.start()

asyncio.run(main())

2. Using Custom Transport

from llmling import RuntimeConfig
from mcp_server_llmling import LLMLingServer

async def main() -> None:
    async with RuntimeConfig.open(config) as runtime:
        server = LLMLingServer(
            config,
            transport="sse",
            transport_options={
                "host": "localhost",
                "port": 8000,
                "cors_origins": ["http://localhost:3000"]
            }
        )
        await server.start()

asyncio.run(main())

3. Resource Configuration

resources:
  python_code:
    type: path
    path: "./src/**/*.py"
    watch:
      enabled: true
      patterns:
        - "*.py"
        - "!**/__pycache__/**"

  api_docs:
    type: text
    content: |
      API Documentation
      ================
      ...

4. Tool Configuration

tools:
  analyze_code:
    import_path: "mymodule.tools.analyze_code"
    description: "Analyze Python code structure"

toolsets:
  api:
    type: openapi
    spec: "https://api.example.com/openapi.json"
    namespace: "api"

Server Configuration

The server is configured through a YAML file with the following sections:

global_settings:
  timeout: 30
  max_retries: 3
  log_level: "INFO"
  requirements: []
  pip_index_url: null
  extra_paths: []

resources:
  # Resource definitions...

tools:
  # Tool definitions...

toolsets:
  # Toolset definitions...

prompts:
  # Prompt definitions...

MCP Protocol

The server implements the MCP protocol which supports:

  1. Resource Operations

    • List available resources
    • Read resource content
    • Watch for resource changes
  2. Tool Operations

    • List available tools
    • Execute tools with parameters
    • Get tool schemas
  3. Prompt Operations

    • List available prompts
    • Get formatted prompts
    • Get completions for prompt arguments
  4. Notifications

    • Resource changes
    • Tool/prompt list updates
    • Progress updates
    • Log messages

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://duotify.com
  • Professional code reviewer for a unique language, friendly and helpful.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • https://hubeiqiao.com
  • IT problem solver with clear, step-by-step guidance.

  • Andris Teikmanis
  • Latvian GPT assistant for developing GPT applications

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Navid RezaeiSarchoghaei
  • Professional Flask/SQLAlchemy code guide. Follow: https://x.com/navid_re

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • OffchainLabs
  • GO -Umsetzung des Ethereum -Beweises des Anteils

  • huahuayu
  • Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.

  • oatpp
  • Die Implementierung des Modellkontextprotokolls von Anthropic für OAT ++

    Reviews

    4 (1)
    Avatar
    user_5OruX6PG
    2025-04-16

    I've been using the mcp-server-llmling by phil65 for a while now, and it's truly impressive. The seamless integration and robust features have greatly enhanced my workflow. It's reliable, efficient, and the community support is fantastic. Highly recommend checking it out on GitHub!