Cover image
Try Now
2025-01-16

MCP-Server zur Anwendung eines von Claude Shannon inspirierten Problemlösungsmusters

3 years

Works with Finder

1

Github Watches

2

Github Forks

10

Github Stars

shannon-thinking

An MCP server implementing Claude Shannon's systematic problem-solving methodology. This server provides a tool that helps break down complex problems into structured thoughts following Shannon's approach of problem definition, mathematical modeling, and practical implementation.

Overview

Claude Shannon, known as the father of information theory, approached complex problems through a systematic methodology:

  1. Problem Definition: Strip the problem to its fundamental elements
  2. Constraints: Identify system limitations and boundaries
  3. Model: Develop mathematical/theoretical frameworks
  4. Proof/Validation: Validate through formal proofs or experimental testing
  5. Implementation/Experiment: Design and test practical solutions

This MCP server implements this methodology as a tool that helps guide systematic problem-solving through these stages.

Installation

npm install @modelcontextprotocol/server-shannon-thinking

Usage

The server provides a single tool named shannonthinking that structures problem-solving thoughts according to Shannon's methodology.

Each thought must include:

  • The actual thought content
  • Type (problem_definition/constraints/model/proof/implementation)
  • Thought number and total thoughts estimate
  • Confidence level (uncertainty: 0-1)
  • Dependencies on previous thoughts
  • Explicit assumptions
  • Whether another thought step is needed

Additional capabilities:

  • Revision: Thoughts can revise earlier steps as understanding evolves
  • Recheck: Mark steps that need re-examination with new information
  • Experimental Validation: Support for empirical testing alongside formal proofs
  • Implementation Notes: Practical constraints and proposed solutions

Example Usage

const thought = {
  thought: "The core problem can be defined as an information flow optimization",
  thoughtType: "problem_definition",
  thoughtNumber: 1,
  totalThoughts: 5,
  uncertainty: 0.2,
  dependencies: [],
  assumptions: ["System has finite capacity", "Information flow is continuous"],
  nextThoughtNeeded: true,
  // Optional: Mark as revision of earlier definition
  isRevision: false,
  // Optional: Indicate step needs recheck
  recheckStep: {
    stepToRecheck: "constraints",
    reason: "New capacity limitations discovered",
    newInformation: "System shows non-linear scaling"
  }
};

// Use with MCP client
const result = await client.callTool("shannonthinking", thought);

Features

  • Iterative Problem-Solving: Supports revisions and rechecks as understanding evolves
  • Flexible Validation: Combines formal proofs with experimental validation
  • Dependency Tracking: Explicitly tracks how thoughts build upon previous ones
  • Assumption Management: Requires clear documentation of assumptions
  • Confidence Levels: Quantifies uncertainty in each step
  • Rich Feedback: Formatted console output with color-coding, symbols, and validation results

Development

# Install dependencies
npm install

# Build
npm run build

# Run tests
npm test

# Watch mode during development
npm run watch

Tool Schema

The tool accepts thoughts with the following structure:

interface ShannonThought {
  thought: string;
  thoughtType: "problem_definition" | "constraints" | "model" | "proof" | "implementation";
  thoughtNumber: number;
  totalThoughts: number;
  uncertainty: number; // 0-1
  dependencies: number[];
  assumptions: string[];
  nextThoughtNeeded: boolean;
  
  // Optional revision fields
  isRevision?: boolean;
  revisesThought?: number;
  
  // Optional recheck field
  recheckStep?: {
    stepToRecheck: ThoughtType;
    reason: string;
    newInformation?: string;
  };
  
  // Optional validation fields
  proofElements?: {
    hypothesis: string;
    validation: string;
  };
  experimentalElements?: {
    testDescription: string;
    results: string;
    confidence: number; // 0-1
    limitations: string[];
  };
  
  // Optional implementation fields
  implementationNotes?: {
    practicalConstraints: string[];
    proposedSolution: string;
  };
}

When to Use

This tool is particularly valuable for:

  • Complex system analysis
  • Information processing problems
  • Engineering design challenges
  • Problems requiring theoretical frameworks
  • Optimization problems
  • Systems requiring practical implementation
  • Problems that need iterative refinement
  • Cases where experimental validation complements theory

License

MIT

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Bora Yalcin
  • Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Callycode Limited
  • A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Khalid kalib
  • Write professional emails

  • XLwebDev.com
  • PR Professional: Guiding You to Get Media Placements and Publicity Quickly and Effectively

  • Jan Meindl
  • Builds new GPTs

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • apappascs
  • Entdecken Sie die umfassendste und aktuellste Sammlung von MCP-Servern auf dem Markt. Dieses Repository dient als zentraler Hub und bietet einen umfangreichen Katalog von Open-Source- und Proprietary MCP-Servern mit Funktionen, Dokumentationslinks und Mitwirkenden.

  • OffchainLabs
  • GO -Umsetzung des Ethereum -Beweises des Anteils

  • huahuayu
  • Ein einheitliches API-Gateway zur Integration mehrerer Ethercan-ähnlicher Blockchain-Explorer-APIs mit Modellkontextprotokoll (MCP) für AI-Assistenten.

  • deemkeen
  • Steuern Sie Ihren MBOT2 mit einer Power Combo: MQTT+MCP+LLM

    Reviews

    4 (1)
    Avatar
    user_Imaq8CtU
    2025-04-16

    Shannon-thinking is an incredibly innovative tool developed by olaservo. It offers a unique approach to problem-solving and knowledge representation, making it a must-try for enthusiasts in the field. The repository on GitHub is well-documented, ensuring a smooth start for any new users. Highly recommended for anyone looking to explore new methodologies in computational thinking!