MCP cover image
Deepseek-Thinking-Claude-3.5-Sonnet-Cline-MCP logo
Public

Deepseek-Thinking-Claude-3.5-Sonnet-Cline-MCP

See in Github
2025-02-02

🧠 MCP Server Implémentation de Rat (Réflexion sur la pensée augmentée) - combine le raisonnement de Deepseek avec les réponses GPT-4 / Claude / Mistral, en maintenant le contexte de la conversation entre les interactions.

1

Github Watches

21

Github Forks

104

Github Stars

Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP

smithery badge

A Model Context Protocol (MCP) server that combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter. This implementation uses a two-stage process where DeepSeek provides structured reasoning which is then incorporated into Claude's response generation.

Features

  • Two-Stage Processing:

    • Uses DeepSeek R1 for initial reasoning (50k character context)
    • Uses Claude 3.5 Sonnet for final response (600k character context)
    • Both models accessed through OpenRouter's unified API
    • Injects DeepSeek's reasoning tokens into Claude's context
  • Smart Conversation Management:

    • Detects active conversations using file modification times
    • Handles multiple concurrent conversations
    • Filters out ended conversations automatically
    • Supports context clearing when needed
  • Optimized Parameters:

    • Model-specific context limits:
      • DeepSeek: 50,000 characters for focused reasoning
      • Claude: 600,000 characters for comprehensive responses
    • Recommended settings:
      • temperature: 0.7 for balanced creativity
      • top_p: 1.0 for full probability distribution
      • repetition_penalty: 1.0 to prevent repetition

Installation

Installing via Smithery

To install DeepSeek Thinking with Claude 3.5 Sonnet for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install @newideas99/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP --client claude

Manual Installation

  1. Clone the repository:
git clone https://github.com/yourusername/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP.git
cd Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP
  1. Install dependencies:
npm install
  1. Create a .env file with your OpenRouter API key:
# Required: OpenRouter API key for both DeepSeek and Claude models
OPENROUTER_API_KEY=your_openrouter_api_key_here

# Optional: Model configuration (defaults shown below)
DEEPSEEK_MODEL=deepseek/deepseek-r1  # DeepSeek model for reasoning
CLAUDE_MODEL=anthropic/claude-3.5-sonnet:beta  # Claude model for responses
  1. Build the server:
npm run build

Usage with Cline

Add to your Cline MCP settings (usually in ~/.vscode/globalStorage/saoudrizwan.claude-dev/settings/cline_mcp_settings.json):

{
  "mcpServers": {
    "deepseek-claude": {
      "command": "/path/to/node",
      "args": ["/path/to/Deepseek-Thinking-Claude-3.5-Sonnet-CLINE-MCP/build/index.js"],
      "env": {
        "OPENROUTER_API_KEY": "your_key_here"
      },
      "disabled": false,
      "autoApprove": []
    }
  }
}

Tool Usage

The server provides two tools for generating and monitoring responses:

generate_response

Main tool for generating responses with the following parameters:

{
  "prompt": string,           // Required: The question or prompt
  "showReasoning"?: boolean, // Optional: Show DeepSeek's reasoning process
  "clearContext"?: boolean,  // Optional: Clear conversation history
  "includeHistory"?: boolean // Optional: Include Cline conversation history
}

check_response_status

Tool for checking the status of a response generation task:

{
  "taskId": string  // Required: The task ID from generate_response
}

Response Polling

The server uses a polling mechanism to handle long-running requests:

  1. Initial Request:

    • generate_response returns immediately with a task ID
    • Response format: {"taskId": "uuid-here"}
  2. Status Checking:

    • Use check_response_status to poll the task status
    • Note: Responses can take up to 60 seconds to complete
    • Status progresses through: pending → reasoning → responding → complete

Example usage in Cline:

// Initial request
const result = await use_mcp_tool({
  server_name: "deepseek-claude",
  tool_name: "generate_response",
  arguments: {
    prompt: "What is quantum computing?",
    showReasoning: true
  }
});

// Get taskId from result
const taskId = JSON.parse(result.content[0].text).taskId;

// Poll for status (may need multiple checks over ~60 seconds)
const status = await use_mcp_tool({
  server_name: "deepseek-claude",
  tool_name: "check_response_status",
  arguments: { taskId }
});

// Example status response when complete:
{
  "status": "complete",
  "reasoning": "...",  // If showReasoning was true
  "response": "..."    // The final response
}

Development

For development with auto-rebuild:

npm run watch

How It Works

  1. Reasoning Stage (DeepSeek R1):

    • Uses OpenRouter's reasoning tokens feature
    • Prompt is modified to output 'done' while capturing reasoning
    • Reasoning is extracted from response metadata
  2. Response Stage (Claude 3.5 Sonnet):

    • Receives the original prompt and DeepSeek's reasoning
    • Generates final response incorporating the reasoning
    • Maintains conversation context and history

License

MIT License - See LICENSE file for details.

Credits

Based on the RAT (Retrieval Augmented Thinking) concept by Skirano, which enhances AI responses through structured reasoning and knowledge retrieval.

This implementation specifically combines DeepSeek R1's reasoning capabilities with Claude 3.5 Sonnet's response generation through OpenRouter's unified API.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Andris Teikmanis
  • Latvian GPT assistant for developing GPT applications

  • https://jgadvisorycpa.com
  • This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • apappascs
  • Découvrez la collection la plus complète et la plus à jour de serveurs MCP sur le marché. Ce référentiel sert de centre centralisé, offrant un vaste catalogue de serveurs MCP open-source et propriétaires, avec des fonctionnalités, des liens de documentation et des contributeurs.

  • ShrimpingIt
  • Manipulation basée sur Micropython I2C de l'exposition GPIO de la série MCP, dérivée d'Adafruit_MCP230XX

  • OffchainLabs
  • Aller la mise en œuvre de la preuve de la participation Ethereum

  • huahuayu
  • Une passerelle API unifiée pour intégrer plusieurs API d'explorateur de blockchain de type étherscan avec la prise en charge du protocole de contexte modèle (MCP) pour les assistants d'IA.

    Reviews

    5 (1)
    Avatar
    user_r87czMHw
    2025-04-15

    As a dedicated user of MCP, I find it remarkably efficient and user-friendly. The interface is intuitive, making it easy to navigate and utilize all its features effectively. Developed by engperini, this tool has significantly boosted my productivity. Highly recommend it to anyone seeking a reliable and robust solution. Great job!