Cover image
Try Now
2025-04-03

Una plantilla de servidor MCP para principiantes con un conector PostgreSQL con código limpio y fácil de entender. Perfecto para los desarrolladores nuevos en modelar el protocolo de contexto que desean experimentar y crear sus propios conectores de herramientas de IA con una configuración mínima.

3 years

Works with Finder

2

Github Watches

2

Github Forks

25

Github Stars

Simple PostgreSQL MCP Server

This is a template project for those looking to build their own MCP servers. I designed it to be dead simple to understand and adapt - the code is straightforward with MCP docs attached so you can quickly get up to speed.

What is MCP?

TL;DR - It's a way to write plugins for AI

Model Context Protocol (MCP) is a standard way for LLMs to interact with external tools and data. In a nutshell:

  • Tools allow the LLM to execute commands (like running a database query)
  • Resources are data you can attach to conversations (like attaching a file to a prompt)
  • Prompts are templates that generate consistent LLM instructions

Features

This PostgreSQL MCP server implements:

  1. Tools

    • execute_query - Run SQL queries against your database
    • test_connection - Verify the database connection is working
  2. Resources

    • db://tables - List of all tables in the schema
    • db://tables/{table_name} - Schema information for a specific table
    • db://schema - Complete schema information for all tables in the database
  3. Prompts

    • Query generation templates
    • Analytical query builders
    • Based on the templates in this repo

Prerequisites

  • Python 3.8+
  • uv - Modern Python package manager and installer
  • npx (included with Node.js)
  • PostgreSQL database you can connect to

Quick Setup

  1. Create a virtual environment and install dependencies:

    # Create a virtual environment with uv
    uv venv
    
    # Activate the virtual environment
    source .venv/bin/activate  # On Windows: .venv\Scripts\activate
    
    # Install dependencies
    uv pip install -r requirements.txt
    
  2. Run the server with the MCP Inspector:

    # Replace with YOUR actual database credentials
    npx @modelcontextprotocol/inspector uv --directory . run postgres -e DSN=postgresql://username:password@hostname:port/database -e SCHEMA=public
    

    Note: If this is your first time running npx, you'll be prompted to approve the installation. Type 'y' to proceed.

    After running this command, you'll see the MCP Inspector interface launched in your browser. You should see a message like:

    MCP Inspector is up and running at http://localhost:5173
    

    If the browser doesn't open automatically, copy and paste the URL into your browser. You should see something like this: MCP Inspector Interface

  3. Using the Inspector:

    • Click the "Connect" button in the interface (unless there's an error message in the console on the bottom left)
    • Explore the "Tools", "Resources", and "Prompts" tabs to see available functionality
    • Try clicking on listed commands or typing resource names to retrieve resources and prompts
    • The interface allows you to test queries and see how the MCP server responds
  4. Take a look at the official docs

    Official server developers guide: https://modelcontextprotocol.io/quickstart/server

    More on the inspector: https://modelcontextprotocol.io/docs/tools/inspector

Connect Your AI Tool to the Server

You can configure the MCP server for your AI assistant by creating an MCP configuration file:

{
   "mcpServers": {
      "postgres": {
         "command": "/path/to/uv",
         "args": [
            "--directory",
            "/path/to/simple-psql-mcp",
            "run",
            "postgres"
         ],
         "env": {
            "DSN": "postgresql://username:password@localhost:5432/my-db",
            "SCHEMA": "public"
         }
      }
   }
}

Alternatively, you can generate this config file using the included script:

# Make the script executable
chmod +x generate_mcp_config.sh

# Run the configuration generator
./generate_mcp_config.sh

When prompted, enter your PostgreSQL DSN and schema name.

How to use it

You can now ask the LLM questions about your data in natural language:

  • "What are all the tables in my database?"
  • "Show me the top 5 users by creation date"
  • "Count addresses by state"

For testing, Claude Desktop supports MCP natively and works with all features (tools, resources, and prompts) right out of the box.

Example Database (Optional)

If you don't have a database ready or encounter connection issues, you can use the included example database:

# Make the script executable
chmod +x example-db/create-db.sh

# Run the database setup script
./example-db/create-db.sh

This script creates a Docker container with a PostgreSQL database pre-populated with sample users and addresses tables. After running, you can connect using:

npx @modelcontextprotocol/inspector uv --directory . run postgres -e DSN=postgresql://postgres:postgres@localhost:5432/user_database -e SCHEMA=public

Next Steps

To extend this project with your own MCP servers:

  1. Create a new directory under /src (e.g., /src/my-new-mcp)
  2. Implement your MCP server following the PostgreSQL example
  3. Add your new MCP to pyproject.toml:
[project.scripts]
postgres = "src.postgres:main"
my-new-mcp = "src.my-new-mcp:main"

You can then run your new MCP with:

npx @modelcontextprotocol/inspector uv --directory . run my-new-mcp

Documentation

Security

This is an experimental project meant to empower developers to create their own MCP server. I did minimum to make sure it won't die immediately when you try it, but be careful - it's very easy to run SQL injections with this tool. The server will check if the query starts with SELECT, but beyond that nothing is guaranteed. TL;DR - don't run in production unless you're the founder and there are no paying clients.

License

MIT

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://appia.in
  • Siri Shortcut Finder – your go-to place for discovering amazing Siri Shortcuts with ease

  • Daren White
  • A supportive coach for mastering all Spanish tenses.

  • J. DE HARO OLLE
  • Especialista en juegos de palabras en varios idiomas.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • HiveNexus
  • Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

    Reviews

    2 (1)
    Avatar
    user_hjBUCLyH
    2025-04-16

    I've been using simple-psql-mcp by NetanelBollag, and it has significantly simplified my interactions with PostgreSQL. The integration was seamless, and the documentation on the GitHub page is clear and helpful. It's a must-have tool for anyone looking to streamline their database management processes. Highly recommended!