MCP cover image
See in Github
2025-03-31

MCP服务器,用于通过Malloy Publisher与Malloy数据模型进行交互

1

Github Watches

0

Github Forks

2

Github Stars

Malloy MCP Server

An MCP server implementation for executing Malloy queries and managing Malloy resources.

Features

  • Execute Malloy queries via MCP
  • Access Malloy project, package, and model metadata
  • Robust error handling with detailed context
  • Comprehensive test coverage
  • Type-safe implementation

Installation

# Install using uv (recommended)
uv pip install malloy-mcp-server

# Or using pip
pip install malloy-mcp-server

Usage

Starting the Server

from malloy_mcp_server import mcp

# Run the server
if __name__ == "__main__":
    mcp.serve()

Configuration

The server can be configured using environment variables:

Variable Description Default
MALLOY_PUBLISHER_ROOT_URL URL of the Malloy Publisher API http://localhost:4000

Example:

# Set the publisher URL
export MALLOY_PUBLISHER_ROOT_URL="http://malloy-publisher:4000"

# Run with custom configuration
python -m malloy_mcp_server

Executing Queries

The server provides an MCP tool for executing Malloy queries:

from malloy_mcp_server import ExecuteMalloyQueryTool

# Example query execution
result = await ExecuteMalloyQueryTool(
    query="select * from users",
    model_path="my_package/users"
)

Accessing Resources

The server provides the following resource endpoints:

  • malloy://project/home/metadata - Project metadata
  • malloy://project/home/package/{package_name} - Package metadata
  • malloy://project/home/model/{model_path} - Model metadata

Development

Setup

  1. Clone the repository:
git clone https://github.com/namabile/malloy-mcp-server.git
cd malloy-mcp-server
  1. Install dependencies:
uv pip install -e ".[dev]"

Running Tests

# Run all tests
pytest

# Run with coverage
pytest --cov=malloy_mcp_server

Code Quality

The project uses:

  • black for code formatting
  • mypy for type checking
  • ruff for linting

Run quality checks:

black .
mypy .
ruff check .

Error Handling

The server provides detailed error handling with context:

from malloy_mcp_server.errors import QueryExecutionError

try:
    result = await ExecuteMalloyQueryTool(...)
except QueryExecutionError as e:
    print(f"Error: {e.message}")
    print("Context:", e.context)

Architecture

The server is built on:

  • FastMCP for the MCP server implementation
  • Malloy Publisher Client for Malloy interactions
  • Pydantic for data validation

Key components:

  • server.py - Core server implementation
  • tools/query_executor.py - Query execution tool
  • errors.py - Error handling utilities

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

License

MIT License - see LICENSE file for details

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Alexandru Strujac
  • Efficient thumbnail creator for YouTube videos

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • 发现市场上最全面,最新的MCP服务器集合。该存储库充当集中式枢纽,提供了广泛的开源和专有MCP服务器目录,并提供功能,文档链接和贡献者。

  • modelcontextprotocol
  • 模型上下文协议服务器

  • Mintplex-Labs
  • 带有内置抹布,AI代理,无代理构建器,MCP兼容性等的多合一桌面和Docker AI应用程序。

  • ShrimpingIt
  • MCP系列GPIO Expander的基于Micropython I2C的操作,源自ADAFRUIT_MCP230XX

  • n8n-io
  • 具有本机AI功能的公平代码工作流程自动化平台。将视觉构建与自定义代码,自宿主或云相结合,400+集成。

  • open-webui
  • 用户友好的AI接口(支持Ollama,OpenAi API,...)

  • WangRongsheng
  • 🧑‍🚀 llm 资料总结(数据处理、模型训练、模型部署、 o1 模型、mcp 、小语言模型、视觉语言模型)|摘要世界上最好的LLM资源。

    Reviews

    2 (1)
    Avatar
    user_0tE2BBKd
    2025-04-16

    As a dedicated user of malloy-mcp-server, I highly recommend this exceptional product by namabile. Its robust performance and seamless integration into my workflow have significantly improved my productivity. The clear documentation and active community support make it easy for both beginners and advanced users. Be sure to check it out on GitHub!