I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

dependencia-MCP
Un servidor de protocolo de contexto modelo (MCP) para analizar las dependencias de código
3
Github Watches
0
Github Forks
8
Github Stars
DependencyMCP Server
A Model Context Protocol (MCP) server that analyzes codebases to generate dependency graphs and architectural insights. This server helps understand code structure, dependencies, and architectural patterns across multiple programming languages.
Features
- Multi-Language Support: Analyzes dependencies in TypeScript, JavaScript, C#, Python, and more
- Dependency Graph Generation: Creates detailed dependency graphs in JSON or DOT format
- Architectural Analysis: Infers architectural layers and validates against rules
- File Metadata: Extracts imports, exports, and other metadata from source files
- Scoring System: Evaluates codebase against architectural rules and patterns
Installation
- Clone the repository
- Install dependencies:
npm install
- Build the project:
npm run build
Configuration
Add to your MCP settings file (usually located at ~/.config/cline/mcp_settings.json or equivalent):
json { mcpServers: { \DependencyMCP: { \command: \node, \args: [\path/to/dependency-mcp/dist/index.js], \env: { \MAX_LINES_TO_READ: \1000, \CACHE_DIR: \path/to/dependency-mcp/.dependency-cache, \CACHE_TTL: \3600000 } } }
Environment Variables:
- MAX_LINES_TO_READ: Maximum number of lines to read from each file (default: 1000)
- CACHE_DIR: Directory to store dependency cache files (default: .dependency-cache)
- CACHE_TTL: Cache time-to-live in milliseconds (default: 1 hour = 3600000)
Available Tools
analyze_dependencies
Analyzes dependencies in a codebase and generates a dependency graph.
const result = await client.callTool("DependencyMCP", "analyze_dependencies", {
path: "/path/to/project",
excludePatterns: ["node_modules", "dist"], // optional
maxDepth: 10, // optional
fileTypes: [".ts", ".js", ".cs"] // optional
});
get_dependency_graph
Gets the dependency graph for a codebase in JSON or DOT format.
const result = await client.callTool("DependencyMCP", "get_dependency_graph", {
path: "/path/to/project",
format: "dot" // or "json" (default)
});
get_file_metadata
Gets detailed metadata about a specific file.
const result = await client.callTool("DependencyMCP", "get_file_metadata", {
path: "/path/to/file.ts"
});
get_architectural_score
Scores the codebase against architectural rules and patterns.
const result = await client.callTool("DependencyMCP", "get_architectural_score", {
path: "/path/to/project",
rules: [
{
pattern: "src/domain/**/*",
allowed: ["src/domain/**/*"],
forbidden: ["src/infrastructure/**/*"]
}
]
});
Example Output
Dependency Graph (JSON)
{
"src/index.ts": {
"path": "src/index.ts",
"imports": ["./utils", "./services/parser"],
"exports": ["analyze", "generateGraph"],
"namespaces": [],
"architecturalLayer": "Infrastructure",
"dependencies": ["src/utils.ts", "src/services/parser.ts"],
"dependents": []
}
}
Architectural Score
{
"score": 85,
"violations": [
"src/domain/user.ts -> src/infrastructure/database.ts violates architectural rules"
],
"details": "Score starts at 100 and deducts 5 points per violation"
}
Development
The server is built with TypeScript and uses:
- Zod for schema validation
- diff for file comparison
- minimatch for glob pattern matching
Project Structure
dependency-mcp/
├── src/
│ └── index.mts # Main server implementation
├── package.json
├── tsconfig.json
└── README.md
Adding Support for New Languages
To add support for a new programming language:
- Add file extensions to the default
fileTypes
array - Implement language-specific regex patterns in
parseFileImports
andparseFileExports
- Add any language-specific architectural patterns to
inferArchitecturalLayer
License
MIT
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Espejo dehttps: //github.com/agentience/practices_mcp_server
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Reviews

user_DLXZGruz
Cursorshare is an incredible tool developed by tyson-tx that has significantly improved my productivity. Its intuitive interface and seamless integration have made collaboration with my team more efficient than ever. The user-friendly design ensures that even new users can navigate and utilize its features with ease. Highly recommend for anyone looking to streamline their workflow!