MCP cover image
See in Github
2025-03-30

Espejo de https: //github.com/qainsights/locust-mcp-server

0

Github Watches

0

Github Forks

0

Github Stars

🚀 ⚡️ locust-mcp-server

A Model Context Protocol (MCP) server implementation for running Locust load tests. This server enables seamless integration of Locust load testing capabilities with AI-powered development environments.

✨ Features

  • Simple integration with Model Context Protocol framework
  • Support for headless and UI modes
  • Configurable test parameters (users, spawn rate, runtime)
  • Easy-to-use API for running Locust load tests
  • Real-time test execution output
  • HTTP/HTTPS protocol support out of the box
  • Custom task scenarios support

Locust-MCP-Server

🔧 Prerequisites

Before you begin, ensure you have the following installed:

📦 Installation

  1. Clone the repository:
git clone https://github.com/yourusername/locust-mcp-server.git
  1. Install the required dependencies:
uv pip install -r requirements.txt
  1. Set up environment variables (optional): Create a .env file in the project root:
LOCUST_HOST=http://localhost:8089  # Default host for your tests
LOCUST_USERS=3                     # Default number of users
LOCUST_SPAWN_RATE=1               # Default user spawn rate
LOCUST_RUN_TIME=10s               # Default test duration

🚀 Getting Started

  1. Create a Locust test script (e.g., hello.py):
from locust import HttpUser, task, between

class QuickstartUser(HttpUser):
    wait_time = between(1, 5)

    @task
    def hello_world(self):
        self.client.get("/hello")
        self.client.get("/world")

    @task(3)
    def view_items(self):
        for item_id in range(10):
            self.client.get(f"/item?id={item_id}", name="/item")
            time.sleep(1)

    def on_start(self):
        self.client.post("/login", json={"username":"foo", "password":"bar"})
  1. Configure the MCP server using the below specs in your favorite MCP client (Claude Desktop, Cursor, Windsurf and more):
{
  "mcpServers": {
    "locust": {
      "command": "/Users/naveenkumar/.local/bin/uv",
      "args": [
        "--directory",
        "/Users/naveenkumar/Gits/locust-mcp-server",
        "run",
        "locust_server.py"
      ]
    }
  }
}
  1. Now ask the LLM to run the test e.g. run locust test for hello.py. The Locust MCP server will use the following tool to start the test:
  • run_locust: Run a test with configurable options for headless mode, host, runtime, users, and spawn rate

📝 API Reference

Run Locust Test

run_locust(
    test_file: str,
    headless: bool = True,
    host: str = "http://localhost:8089",
    runtime: str = "10s",
    users: int = 3,
    spawn_rate: int = 1
)

Parameters:

  • test_file: Path to your Locust test script
  • headless: Run in headless mode (True) or with UI (False)
  • host: Target host to load test
  • runtime: Test duration (e.g., "30s", "1m", "5m")
  • users: Number of concurrent users to simulate
  • spawn_rate: Rate at which users are spawned

🤝 Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

相关推荐

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Contraband Interactive
  • Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.

  • rustassistant.com
  • Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • n8n-io
  • Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.

  • WangRongsheng
  • 🧑‍🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.

  • open-webui
  • Interfaz de IA fácil de usar (admite Ollama, Operai API, ...)

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • metorial
  • Versiones contenedores de cientos de servidores MCP 📡 🧠

    Reviews

    4 (1)
    Avatar
    user_UWyttIRq
    2025-04-17

    QAInsights_locust-mcp-server by MCP-Mirror is an outstanding tool for performance testing. It integrates seamlessly with Locust, making it easy to manage and scale load tests. The user-friendly interface and robust features have significantly improved our testing processes. Highly recommend this to any QA engineer looking to enhance their testing toolkit. Check it out at the provided GitHub link!