Cover image
Nvkanirudh_yt-to linkedin-mcp-server
Public

Nvkanirudh_yt-to linkedin-mcp-server

Try Now
2025-04-02

Espejo de https: //github.com/nvkanirudh/yt-to-linkedin-mcp-server

3 years

Works with Finder

0

Github Watches

0

Github Forks

0

Github Stars

YouTube to LinkedIn MCP Server

A Model Context Protocol (MCP) server that automates generating LinkedIn post drafts from YouTube videos. This server provides high-quality, editable content drafts based on YouTube video transcripts.

Features

  • YouTube Transcript Extraction: Extract transcripts from YouTube videos using video URLs
  • Transcript Summarization: Generate concise summaries of video content using OpenAI GPT
  • LinkedIn Post Generation: Create professional LinkedIn post drafts with customizable tone and style
  • Modular API Design: Clean FastAPI implementation with well-defined endpoints
  • Containerized Deployment: Ready for deployment on Smithery

Setup Instructions

Prerequisites

  • Python 3.8+
  • Docker (for containerized deployment)
  • OpenAI API Key
  • YouTube Data API Key (optional, but recommended for better metadata)

Local Development

  1. Clone the repository:

    git clone <repository-url>
    cd yt-to-linkedin
    
  2. Create a virtual environment and install dependencies:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
    pip install -r requirements.txt
    
  3. Create a .env file in the project root with your API keys:

    OPENAI_API_KEY=your_openai_api_key
    YOUTUBE_API_KEY=your_youtube_api_key
    
  4. Run the application:

    uvicorn app.main:app --reload
    
  5. Access the API documentation at http://localhost:8000/docs

Docker Deployment

  1. Build the Docker image:

    docker build -t yt-to-linkedin-mcp .
    
  2. Run the container:

    docker run -p 8000:8000 --env-file .env yt-to-linkedin-mcp
    

Smithery Deployment

  1. Ensure you have the Smithery CLI installed and configured.

  2. Deploy to Smithery:

    smithery deploy
    

API Endpoints

1. Transcript Extraction

Endpoint: /api/v1/transcript
Method: POST
Description: Extract transcript from a YouTube video

Request Body:

{
  "youtube_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "language": "en",
  "youtube_api_key": "your_youtube_api_key"  // Optional, provide your own YouTube API key
}

Response:

{
  "video_id": "VIDEO_ID",
  "video_title": "Video Title",
  "transcript": "Full transcript text...",
  "language": "en",
  "duration_seconds": 600,
  "channel_name": "Channel Name",
  "error": null
}

2. Transcript Summarization

Endpoint: /api/v1/summarize
Method: POST
Description: Generate a summary from a video transcript

Request Body:

{
  "transcript": "Video transcript text...",
  "video_title": "Video Title",
  "tone": "professional",
  "audience": "general",
  "max_length": 250,
  "min_length": 150,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "summary": "Generated summary text...",
  "word_count": 200,
  "key_points": [
    "Key point 1",
    "Key point 2",
    "Key point 3"
  ]
}

3. LinkedIn Post Generation

Endpoint: /api/v1/generate-post
Method: POST
Description: Generate a LinkedIn post from a video summary

Request Body:

{
  "summary": "Video summary text...",
  "video_title": "Video Title",
  "video_url": "https://www.youtube.com/watch?v=VIDEO_ID",
  "speaker_name": "Speaker Name",
  "hashtags": ["ai", "machinelearning"],
  "tone": "professional",
  "voice": "first_person",
  "audience": "technical",
  "include_call_to_action": true,
  "max_length": 1200,
  "openai_api_key": "your_openai_api_key"  // Optional, provide your own OpenAI API key
}

Response:

{
  "post_content": "Generated LinkedIn post content...",
  "character_count": 800,
  "estimated_read_time": "About 1 minute",
  "hashtags_used": ["#ai", "#machinelearning"]
}

4. Output Formatting

Endpoint: /api/v1/output
Method: POST
Description: Format the LinkedIn post for output

Request Body:

{
  "post_content": "LinkedIn post content...",
  "format": "json"
}

Response:

{
  "content": {
    "post_content": "LinkedIn post content...",
    "character_count": 800
  },
  "format": "json"
}

Environment Variables

Variable Description Required
OPENAI_API_KEY OpenAI API key for summarization and post generation No (can be provided in requests)
YOUTUBE_API_KEY YouTube Data API key for fetching video metadata No (can be provided in requests)
PORT Port to run the server on (default: 8000) No

Note: While environment variables for API keys are optional (as they can be provided in each request), it's recommended to set them for local development and testing. When deploying to Smithery, users will need to provide their own API keys in the requests.

License

MIT

相关推荐

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • tomoyoshi hirata
  • Sony α7IIIマニュアルアシスタント

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • jae-jae
  • Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.

  • HiveNexus
  • Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

  • patruff
  • Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo

  • pontusab
  • La comunidad de cursor y windsurf, encontrar reglas y MCP

  • JackKuo666
  • 🔍 Habilitar asistentes de IA para buscar y acceder a la información del paquete PYPI a través de una interfaz MCP simple.

  • av
  • Ejecute sin esfuerzo LLM Backends, API, frontends y servicios con un solo comando.

    Reviews

    4 (1)
    Avatar
    user_L2KwppDQ
    2025-04-17

    I've been using the NvkAnirudh_YT-to-LinkedIn-MCP-Server for a while now, and it has significantly streamlined my social media strategy. The seamless integration between YouTube and LinkedIn is impressive, and the automated features save a lot of time. Kudos to MCP-Mirror for developing such a user-friendly and efficient tool! Highly recommend checking it out on GitHub.