I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

baryhuang_mcp-server-cualquier-openapi
Espejo de https: //github.com/baryhuang/mcp-server- anhy-openapi
3 years
Works with Finder
0
Github Watches
1
Github Forks
1
Github Stars
MCP Server: Scalable OpenAPI Endpoint Discovery and API Request Tool
TODO
- The docker image is 2GB without pre-downloaded models. Its 3.76GB with pre-downloaded models!! Too big, someone please help me to reduce the size.
TL'DR
Why I create this: I want to serve my private API, whose swagger openapi docs is a few hundreds KB in size.
- Claude MCP simply error on processing these size of file
- I attempted convert the result to YAML, not small enough and a lot of errors. FAILED
- I attempted to provide a API category, then ask MCP Client (Claude Desktop) to get the api doc by group. Still too big, FAILED.
Eventually I came down to this solution:
- It uses in-memory semantic search to find relevant Api endpoints by natural language (such as list products)
- It returns the complete end-point docs (as I designed it to store one endpoint as one chunk) in millionseconds (as it's in memory)
Boom, Claude now knows what API to call, with the full parameters!
Wait I have to create another tool in this server to make the actual restful request, because "fetch" server simply don't work, and I don't want to debug why.
https://github.com/user-attachments/assets/484790d2-b5a7-475d-a64d-157e839ad9b0
Technical highlights:
query -> [Embedding] -> FAISS TopK -> OpenAPI docs -> MCP Client (Claude Desktop)
MCP Client -> Construct OpenAPI Request -> Execute Request -> Return Response
Features
- 🧠 Use remote openapi json file as source, no local file system access, no updating required for API changes
- 🔍 Semantic search using optimized MiniLM-L3 model (43MB vs original 90MB)
- 🚀 FastAPI-based server with async support
- 🧠 Endpoint based chunking OpenAPI specs (handles 100KB+ documents), no loss of endpoint context
- ⚡ In-memory FAISS vector search for instant endpoint discovery
Limitations
- Not supporting linux/arm/v7 (build fails on Transformer library)
- 🐢 Cold start penalty (~15s for model loading) if not using docker image
- [Obsolete] Current docker image disabled downloading models. You have a dependency over huggingface. When you load the Claude Desktop, it takes some time to download the model. If huggingface is down, your server will not start.
- The latest docker image is embedding pre-downloaded models. If there is issues, I would revert to the old one.
Multi-instance config example
Here is the multi-instance config example. I design it so it can more flexibly used for multiple set of apis:
{
"mcpServers": {
"finance_openapi": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"OPENAPI_JSON_DOCS_URL=https://api.finance.com/openapi.json",
"-e",
"MCP_API_PREFIX=finance",
"buryhuang/mcp-server-any-openapi:latest"
]
},
"healthcare_openapi": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"OPENAPI_JSON_DOCS_URL=https://api.healthcare.com/openapi.json",
"-e",
"MCP_API_PREFIX=healthcare",
"buryhuang/mcp-server-any-openapi:latest"
]
}
}
}
In this example:
- The server will automatically extract base URLs from the OpenAPI docs:
-
https://api.finance.com
for finance APIs -
https://api.healthcare.com
for healthcare APIs
-
- You can optionally override the base URL using
API_REQUEST_BASE_URL
environment variable:
{
"mcpServers": {
"finance_openapi": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"OPENAPI_JSON_DOCS_URL=https://api.finance.com/openapi.json",
"-e",
"API_REQUEST_BASE_URL=https://api.finance.staging.com",
"-e",
"MCP_API_PREFIX=finance",
"buryhuang/mcp-server-any-openapi:latest"
]
}
}
}
Claude Desktop Usage Example
Claude Desktop Project Prompt:
You should get the api spec details from tools financial_api_request_schema
You task is use financial_make_request tool to make the requests to get response. You should follow the api spec to add authorization header:
Authorization: Bearer <xxxxxxxxx>
Note: The base URL will be returned in the api_request_schema response, you don't need to specify it manually.
In chat, you can do:
Get prices for all stocks
Installation
Installing via Smithery
To install Scalable OpenAPI Endpoint Discovery and API Request Tool for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @baryhuang/mcp-server-any-openapi --client claude
Using pip
pip install mcp-server-any-openapi
Configuration
Customize through environment variables:
-
OPENAPI_JSON_DOCS_URL
: URL to the OpenAPI specification JSON (defaults to https://api.staging.readymojo.com/openapi.json) -
MCP_API_PREFIX
: Customizable tool namespace (default "any_openapi"):# Creates tools: custom_api_request_schema and custom_make_request docker run -e MCP_API_PREFIX=finance ...
Available Tools
The server provides the following tools (where {prefix}
is determined by MCP_API_PREFIX
):
{prefix}_api_request_schema
Get API endpoint schemas that match your intent. Returns endpoint details including path, method, parameters, and response formats.
Input Schema:
{
"query": {
"type": "string",
"description": "Describe what you want to do with the API (e.g., 'Get user profile information', 'Create a new job posting')"
}
}
{prefix}_make_request
Essential for reliable execution with complex APIs where simplified implementations fail. Provides:
Input Schema:
{
"method": {
"type": "string",
"description": "HTTP method (GET, POST, PUT, DELETE, PATCH)",
"enum": ["GET", "POST", "PUT", "DELETE", "PATCH"]
},
"url": {
"type": "string",
"description": "Fully qualified API URL (e.g., https://api.example.com/users/123)"
},
"headers": {
"type": "object",
"description": "Request headers (optional)",
"additionalProperties": {
"type": "string"
}
},
"query_params": {
"type": "object",
"description": "Query parameters (optional)",
"additionalProperties": {
"type": "string"
}
},
"body": {
"type": "object",
"description": "Request body for POST, PUT, PATCH (optional)"
}
}
Response Format:
{
"status_code": 200,
"headers": {
"content-type": "application/json",
...
},
"body": {
// Response data
}
}
Docker Support
Multi-Architecture Builds
Official images support 3 platforms:
# Build and push using buildx
docker buildx create --use
docker buildx build --platform linux/amd64,linux/arm64 \
-t buryhuang/mcp-server-any-openapi:latest \
--push .
Flexible Tool Naming
Control tool names through MCP_API_PREFIX
:
# Produces tools with "finance_api" prefix:
docker run -e MCP_API_PREFIX=finance_ ...
Supported Platforms
- linux/amd64
- linux/arm64
Option 1: Use Prebuilt Image (Docker Hub)
docker pull buryhuang/mcp-server-any-openapi:latest
Option 2: Local Development Build
docker build -t mcp-server-any-openapi .
Running the Container
docker run \
-e OPENAPI_JSON_DOCS_URL=https://api.example.com/openapi.json \
-e MCP_API_PREFIX=finance \
buryhuang/mcp-server-any-openapi:latest
Key Components
-
EndpointSearcher: Core class that handles:
- OpenAPI specification parsing
- Semantic search index creation
- Endpoint documentation formatting
- Natural language query processing
-
Server Implementation:
- Async FastAPI server
- MCP protocol support
- Tool registration and invocation handling
Running from Source
python -m mcp_server_any_openapi
Integration with Claude Desktop
Configure the MCP server in your Claude Desktop settings:
{
"mcpServers": {
"any_openapi": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e",
"OPENAPI_JSON_DOCS_URL=https://api.example.com/openapi.json",
"-e",
"MCP_API_PREFIX=finance",
"buryhuang/mcp-server-any-openapi:latest"
]
}
}
}
Contributing
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Commit your changes (
git commit -m 'Add some amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
License
This project is licensed under the terms included in the LICENSE file.
Implementation Notes
-
Endpoint-Centric Processing: Unlike document-level analysis that struggles with large specs, we index individual endpoints with:
- Path + Method as unique identifiers
- Parameter-aware embeddings
- Response schema context
-
Optimized Spec Handling: Processes OpenAPI specs up to 10MB (~5,000 endpoints) through:
- Lazy loading of schema components
- Parallel parsing of path items
- Selective embedding generation (omits redundant descriptions)
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
A geek-themed horoscope generator blending Bitcoin prices, tech jargon, and astrological whimsy.
Converts Figma frames into front-end code for various mobile frameworks.
Therapist adept at identifying core issues and offering practical advice with images.
Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven
A world class elite tech co-founder entrepreneur, expert in software development, entrepreneurship, marketing, coaching style leadership and aligned with ambition for excellence, global market penetration and worldy perspectives.
A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Espejo de https: //github.com/suhail-ak-s/mcp-typesense-server
Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。
Reviews

user_zomNPLXQ
I've been using baryhuang_mcp-server-any-openapi by MCP-Mirror and it's simply fantastic! The server handles multiple API calls efficiently, making it perfect for my development needs. The documentation is clear and easy to follow, which is great for both beginners and seasoned developers. Highly recommend checking it out on GitHub!