I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

aqicn-mcp
Un servidor MCP para obtener datos de calidad del aire usando aqicn.org
1
Github Watches
0
Github Forks
0
Github Stars
AQICN MCP Server
This is a Model Context Protocol (MCP) server that provides air quality data tools from the World Air Quality Index (AQICN) project. It allows LLMs to fetch real-time air quality data for cities and coordinates worldwide.
Installation
Installing via Smithery
To install AQICN MCP Server for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install @mattmarcin/aqicn-mcp --client claude
Installing via recommended uv (manual)
We recommend using uv to manage your Python environment:
# Install the package and dependencies
uv pip install -e .
Environment Setup
Create a .env
file in the project root (you can copy from .env.example
):
# .env
AQICN_API_KEY=your_api_key_here
Alternatively, you can set the environment variable directly:
# Linux/macOS
export AQICN_API_KEY=your_api_key_here
# Windows
set AQICN_API_KEY=your_api_key_here
Running the Server
Development Mode
The fastest way to test and debug your server is with the MCP Inspector:
mcp dev aqicn_server.py
Claude Desktop Integration
Once your server is ready, install it in Claude Desktop:
mcp install aqicn_server.py
Direct Execution
For testing or custom deployments:
python aqicn_server.py
Available Tools
1. city_aqi
Get air quality data for a specific city.
@mcp.tool()
def city_aqi(city: str) -> AQIData:
"""Get air quality data for a specific city."""
Input:
-
city
: Name of the city to get air quality data for
Output: AQIData
with:
-
aqi
: Air Quality Index value -
station
: Station name -
dominant_pollutant
: Main pollutant (if available) -
time
: Timestamp of the measurement -
coordinates
: Latitude and longitude of the station
2. geo_aqi
Get air quality data for a specific location using coordinates.
@mcp.tool()
def geo_aqi(latitude: float, longitude: float) -> AQIData:
"""Get air quality data for a specific location using coordinates."""
Input:
-
latitude
: Latitude of the location -
longitude
: Longitude of the location
Output: Same as city_aqi
3. search_station
Search for air quality monitoring stations by keyword.
@mcp.tool()
def search_station(keyword: str) -> list[StationInfo]:
"""Search for air quality monitoring stations by keyword."""
Input:
-
keyword
: Keyword to search for stations (city name, station name, etc.)
Output: List of StationInfo
with:
-
name
: Station name -
station_id
: Unique station identifier -
coordinates
: Latitude and longitude of the station
Example Usage
Using the MCP Python client:
from mcp import Client
async with Client() as client:
# Get air quality data for Beijing
beijing_data = await client.city_aqi(city="beijing")
print(f"Beijing AQI: {beijing_data.aqi}")
# Get air quality data by coordinates (Tokyo)
geo_data = await client.geo_aqi(latitude=35.6762, longitude=139.6503)
print(f"Tokyo AQI: {geo_data.aqi}")
# Search for stations
stations = await client.search_station(keyword="london")
for station in stations:
print(f"Station: {station.name} ({station.coordinates})")
Contributing
Feel free to open issues and pull requests. Please ensure your changes include appropriate tests and documentation.
License
This project is licensed under the MIT License.
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
This GPT assists in finding a top-rated business CPA - local or virtual. We account for their qualifications, experience, testimonials and reviews. Business operators provide a short description of your business, services wanted, and city or state.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Espejo dehttps: //github.com/agentience/practices_mcp_server
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Reviews

user_lusFgi0Q
I recently used the Hello MCP Go ???? application created by softchris and I am absolutely blown away! The user interface is seamless and the performance is top-notch. This application's welcome message makes you feel instantly right at home. For anyone looking for an efficient and user-friendly MCP tool, I highly recommend checking it out at https://mcp.so/server/hello-mcp-go/softchris. You won't be disappointed!