I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

servidor de mCP juntos
Servidor MCP habilita la generación de imágenes de alta calidad a través del modelo de flujo de IA.
3 years
Works with Finder
1
Github Watches
2
Github Forks
8
Github Stars
Image Generation MCP Server
A Model Context Protocol (MCP) server that enables seamless generation of high-quality images using the Flux.1 Schnell model via Together AI. This server provides a standardized interface to specify image generation parameters.
Features
- High-quality image generation powered by the Flux.1 Schnell model
- Support for customizable dimensions (width and height)
- Clear error handling for prompt validation and API issues
- Easy integration with MCP-compatible clients
- Optional image saving to disk in PNG format
Installation
npm install together-mcp
Or run directly:
npx together-mcp@latest
Configuration
Add to your MCP server configuration:
{
"mcpServers": {
"together-image-gen": {
"command": "npx",
"args": ["together-mcp@latest -y"],
"env": {
"TOGETHER_API_KEY": "<API KEY>"
}
}
}
}
Usage
The server provides one tool: generate_image
Using generate_image
This tool has only one required parameter - the prompt. All other parameters are optional and use sensible defaults if not provided.
Parameters
{
// Required
prompt: string; // Text description of the image to generate
// Optional with defaults
model?: string; // Default: "black-forest-labs/FLUX.1-schnell-Free"
width?: number; // Default: 1024 (min: 128, max: 2048)
height?: number; // Default: 768 (min: 128, max: 2048)
steps?: number; // Default: 1 (min: 1, max: 100)
n?: number; // Default: 1 (max: 4)
response_format?: string; // Default: "b64_json" (options: ["b64_json", "url"])
image_path?: string; // Optional: Path to save the generated image as PNG
}
Minimal Request Example
Only the prompt is required:
{
"name": "generate_image",
"arguments": {
"prompt": "A serene mountain landscape at sunset"
}
}
Full Request Example with Image Saving
Override any defaults and specify a path to save the image:
{
"name": "generate_image",
"arguments": {
"prompt": "A serene mountain landscape at sunset",
"width": 1024,
"height": 768,
"steps": 20,
"n": 1,
"response_format": "b64_json",
"model": "black-forest-labs/FLUX.1-schnell-Free",
"image_path": "/path/to/save/image.png"
}
}
Response Format
The response will be a JSON object containing:
{
"id": string, // Generation ID
"model": string, // Model used
"object": "list",
"data": [
{
"timings": {
"inference": number // Time taken for inference
},
"index": number, // Image index
"b64_json": string // Base64 encoded image data (if response_format is "b64_json")
// OR
"url": string // URL to generated image (if response_format is "url")
}
]
}
If image_path was provided and the save was successful, the response will include confirmation of the save location.
Default Values
If not specified in the request, these defaults are used:
- model: "black-forest-labs/FLUX.1-schnell-Free"
- width: 1024
- height: 768
- steps: 1
- n: 1
- response_format: "b64_json"
Important Notes
- Only the
prompt
parameter is required - All optional parameters use defaults if not provided
- When provided, parameters must meet their constraints (e.g., width/height ranges)
- Base64 responses can be large - use URL format for larger images
- When saving images, ensure the specified directory exists and is writable
Prerequisites
- Node.js >= 16
- Together AI API key
- Sign in at api.together.xyz
- Navigate to API Keys settings
- Click "Create" to generate a new API key
- Copy the generated key for use in your MCP configuration
Dependencies
{
"@modelcontextprotocol/sdk": "0.6.0",
"axios": "^1.6.7"
}
Development
Clone and build the project:
git clone https://github.com/manascb1344/together-mcp-server
cd together-mcp-server
npm install
npm run build
Available Scripts
-
npm run build
- Build the TypeScript project -
npm run watch
- Watch for changes and rebuild -
npm run inspector
- Run MCP inspector
Contributing
Contributions are welcome! Please follow these steps:
- Fork the repository
- Create a new branch (
feature/my-new-feature
) - Commit your changes
- Push the branch to your fork
- Open a Pull Request
Feature requests and bug reports can be submitted via GitHub Issues. Please check existing issues before creating a new one.
For significant changes, please open an issue first to discuss your proposed changes.
License
This project is licensed under the MIT License. See the LICENSE file for details.
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Oede knorrepot die vasthoudt an de goeie ouwe tied van 't boerenleven
A world class elite tech co-founder entrepreneur, expert in software development, entrepreneurship, marketing, coaching style leadership and aligned with ambition for excellence, global market penetration and worldy perspectives.
Advanced software engineer GPT that excels through nailing the basics.
A medical specialist offering assistance grounded in clinical guidelines. Disclaimer: This is intended for research and is NOT safe for clinical use!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Espejo de https: //github.com/suhail-ak-s/mcp-typesense-server
本项目是一个钉钉 MCP (Protocolo del conector de mensajes )服务 , 提供了与钉钉企业应用交互的 API 接口。项目基于 Go 语言开发 支持员工信息查询和消息发送等功能。 支持员工信息查询和消息发送等功能。
Reviews

user_WgXuTGEC
MODEL CONTEXT PROTOCOL by arkapatra31 is a phenomenal tool for server-side application management. Its seamless integration capability and robust performance make it a must-have for developers. The documentation on the website is incredibly thorough, ensuring quick implementation and minimal hassle. Highly recommend checking it out here: https://mcp.so/server/model-context-protocol/arkapatra31.