MCP cover image
See in Github
2025-04-12

AI Overlord, administrando sus agentes dispares a través del uso local de la computadora.

2

Github Watches

0

Github Forks

0

Github Stars

overlord

AI Overlord, managing your disparate agents through local computer use. This project allows AI to control macOS natively, providing direct system control through native macOS commands and utilities.

[!CAUTION] This comes with obvious risks. Overlord can control everything on your Mac. Please be careful.

Features

  • Native macOS GUI interaction (no Docker required)
  • Screen capture using native macOS commands
  • Keyboard and mouse control through cliclick
  • Multiple LLM provider support (Anthropic, Bedrock, Vertex)
  • Streamlit-based interface
  • Automatic screen resolution scaling
  • File system interaction and editing capabilities

Prerequisites

  • macOS Sonoma 15.7 or later
  • Python 3.12+
  • Homebrew (for installing additional dependencies)
  • cliclick (brew install cliclick) - Required for mouse and keyboard control

Setup Instructions

  1. Clone the repository and navigate to it:
git clone https://github.com/hanzoai/overlord.git
cd overlord
  1. Create and activate a virtual environment:
python3.12 -m venv venv
source venv/bin/activate
  1. Run the setup script:
chmod +x setup.sh
./setup.sh
  1. Install Python requirements:
pip install -r requirements.txt

Running the Demo

Set up your environment and Anthropic API key

  1. In a .env file add:
API_PROVIDER=anthropic
ANTHROPIC_API_KEY=<key>
WIDTH=800
HEIGHT=600
DISPLAY_NUM=1

Set the screen dimensions (recommended: stay within XGA/WXGA resolution), and put in your key from Anthropic Console.

  1. Start the Streamlit app:
streamlit run streamlit.py

The interface will be available at http://localhost:8501

Screen Size Considerations

We recommend using one of these resolutions for optimal performance:

  • XGA: 1024x768 (4:3)
  • WXGA: 1280x800 (16:10)
  • FWXGA: 1366x768 (~16:9)

Higher resolutions will be automatically scaled down to these targets to optimize model performance. You can set the resolution using environment variables:

export WIDTH=1024
export HEIGHT=768
streamlit run streamlit.py

[!IMPORTANT] The Beta API used in this reference implementation is subject to change. Please refer to the API release notes for the most up-to-date information.

相关推荐

  • NiKole Maxwell
  • I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

  • Yusuf Emre Yeşilyurt
  • I find academic articles and books for research and literature reviews.

  • https://suefel.com
  • Latest advice and best practices for custom GPT development.

  • https://maiplestudio.com
  • Find Exhibitors, Speakers and more

  • Carlos Ferrin
  • Encuentra películas y series en plataformas de streaming.

  • Joshua Armstrong
  • Confidential guide on numerology and astrology, based of GG33 Public information

  • Emmet Halm
  • Converts Figma frames into front-end code for various mobile frameworks.

  • Elijah Ng Shi Yi
  • Advanced software engineer GPT that excels through nailing the basics.

  • lumpenspace
  • Take an adjectivised noun, and create images making it progressively more adjective!

  • apappascs
  • Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.

  • ShrimpingIt
  • Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx

  • modelcontextprotocol
  • Servidores de protocolo de contexto modelo

  • Mintplex-Labs
  • La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.

  • ravitemer
  • Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)

    Reviews

    1 (1)
    Avatar
    user_lQ7LtZI1
    2025-04-17

    Overlord by hanzoai is an incredibly efficient and intuitive MCP application that has significantly boosted my productivity. The seamless integration and user-friendly interface make it a must-have tool for anyone looking to streamline their workflow. Highly recommend checking it out on GitHub!