Deep Research MCP Server
Deep Research is an agent-based tool that provides web search and advanced research capabilities. It leverages HuggingFace's smolagents and is implemented as an MCP server.
This project is based on HuggingFace's open_deep_research example.
Features
- Web search and information gathering
- PDF and document analysis
- Image analysis and description
- YouTube transcript retrieval
- Archive site search
Requirements
- Python 3.11 or higher
-
uvpackage manager - The following API keys:
- OpenAI API key
- HuggingFace token
- SerpAPI key
Installation
- Clone the repository:
git clone https://github.com/Hajime-Y/deep-research-mcp.git
cd deep-research-mcp
- Create a virtual environment and install dependencies:
uv venv
source .venv/bin/activate # For Linux or Mac
# .venv\Scripts\activate # For Windows
uv sync
Environment Variables
Create a .env file in the root directory of the project and set the following environment variables:
OPENAI_API_KEY=your_openai_api_key
HF_TOKEN=your_huggingface_token
SERPER_API_KEY=your_serper_api_key
You can obtain a SERPER_API_KEY by signing up at Serper.dev.
Usage
Start the MCP server:
uv run deep_research.py
This will launch the deep_research agent as an MCP server.
Key Components
-
deep_research.py: Entry point for the MCP server -
create_agent.py: Agent creation and configuration -
scripts/: Various tools and utilities-
text_web_browser.py: Text-based web browser -
text_inspector_tool.py: File inspection tool -
visual_qa.py: Image analysis tool -
mdconvert.py: Converts various file formats to Markdown
-
License
This project is provided under the [License Name].
Acknowledgements
This project uses code from HuggingFace's smolagents and Microsoft's autogen projects.
相关推荐
I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Advanced software engineer GPT that excels through nailing the basics.
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Converts Figma frames into front-end code for various mobile frameworks.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
🧑🚀 全世界最好的 llM 资料总结(数据处理、模型训练、模型部署、 O1 模型、 MCP 、小语言模型、视觉语言模型) | Resumen de los mejores recursos del mundo.
Una lista curada de servidores de protocolo de contexto del modelo (MCP)
Espejo dehttps: //github.com/agentience/practices_mcp_server
Reviews
user_Hi2lidg3
I have been using deep-research-mcp by Hajime-Y and it has significantly streamlined my research process. The tool is incredibly user-friendly and efficient, allowing me to manage complex data with ease. Highly recommended for anyone involved in deep research projects! Check it out at https://github.com/Hajime-Y/deep-research-mcp.