I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

Simple-Memory-Extension-MCP-server
Un servidor MCP para extender el contexto de los agentes. Útil al codificar grandes características o codificación de vibra y la necesidad de almacenar/retirar el progreso, los momentos o cambios clave o cualquier cosa que valga la pena recordar. Simplemente pídale al agente que almacene recuerdos y recuerde cuando lo desee.
1
Github Watches
1
Github Forks
5
Github Stars
Simple Memory Extension MCP Server
An MCP server to extend the context window / memory of agents. Useful when coding big features or vibe coding and need to store/recall progress, key moments or changes or anything worth remembering. Simply ask the agent to store memories and recall whenever you need or ask the agent to fully manage its memory (through cursor rules for example) however it sees fit.
Usage
Starting the Server
npm install
npm start
Available Tools
Context Item Management
-
store_context_item
- Store a value with key in namespace -
retrieve_context_item_by_key
- Get value by key -
delete_context_item
- Delete key-value pair
Namespace Management
-
create_namespace
- Create new namespace -
delete_namespace
- Delete namespace and all contents -
list_namespaces
- List all namespaces -
list_context_item_keys
- List keys in a namespace
Semantic Search
-
retrieve_context_items_by_semantic_search
- Find items by meaning
Semantic Search Implementation
- Query converted to vector using E5 model
- Text automatically split into chunks for better matching
- Cosine similarity calculated between query and stored chunks
- Results filtered by threshold and sorted by similarity
- Top matches returned with full item values
Development
# Dev server
npm run dev
# Format code
npm run format
.env
# Path to SQLite database file
DB_PATH=./data/context.db
PORT=3000
# Use HTTP SSE or Stdio
USE_HTTP_SSE=true
# Logging Configuration: debug, info, warn, error
LOG_LEVEL=info
Semantic Search
This project includes semantic search capabilities using the E5 embedding model from Hugging Face. This allows you to find context items based on their meaning rather than just exact key matches.
Setup
The semantic search feature requires Python dependencies, but these should be automatically installed when you run: npm run start
Embedding Model
We use the intfloat/multilingual-e5-large-instruct
Notes
Developed mostly while vibe coding, so don't expect much :D. But it works, and I found it helpful so w/e. Feel free to contribute or suggest improvements.
相关推荐
I find academic articles and books for research and literature reviews.
Evaluator for marketplace product descriptions, checks for relevancy and keyword stuffing.
Confidential guide on numerology and astrology, based of GG33 Public information
Emulating Dr. Jordan B. Peterson's style in providing life advice and insights.
Your go-to expert in the Rust ecosystem, specializing in precise code interpretation, up-to-date crate version checking, and in-depth source code analysis. I offer accurate, context-aware insights for all your Rust programming questions.
Advanced software engineer GPT that excels through nailing the basics.
Converts Figma frames into front-end code for various mobile frameworks.
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
La aplicación AI de escritorio todo en uno y Docker con trapo incorporado, agentes de IA, creador de agentes sin código, compatibilidad de MCP y más.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Plataforma de automatización de flujo de trabajo de código justo con capacidades de IA nativas. Combine el edificio visual con código personalizado, auto-anfitrión o nube, más de 400 integraciones.
Espejo dehttps: //github.com/agentience/practices_mcp_server
Una puerta de enlace de API unificada para integrar múltiples API de explorador de blockchain similar a Esterscan con soporte de protocolo de contexto modelo (MCP) para asistentes de IA.
Reviews

user_HcRIOlv4
Simple-Memory-Extension-MCP-Server by gmacev is a fantastic tool for enhancing memory management in MCP applications. It's intuitive and easy to integrate, making it an essential addition for developers looking to optimize their server performance. Highly recommend checking it out at https://github.com/gmacev/Simple-Memory-Extension-MCP-Server!