I craft unique cereal names, stories, and ridiculously cute Cereal Baby images.

trellis_mcp
Protocolo de contexto del modelo (MCP) para modelos Trellis (texto de texto a 3D/imagen a 3D)
3 years
Works with Finder
1
Github Watches
0
Github Forks
1
Github Stars
Trellis MCP Server
Trellis MCP provides an interface between AI assistants and Trellis via Model Context Protocol (MCP).
Disclaimer
This project shows a very minimal integration of MCP with Trellis: a lightweight and opensource text-to-3d/image-to-3d 3DAIGC model. Compared with existing rodin integration in blender-mcp and tripo integration, it has following advantages:
- Faster and memory-efficient: You can deploy TRELLIS locally with only 8GPU+ VRAM, while can generate a textured mesh from text in only ~15s(10s with more vram).
- FREE: You DON'T have to pay expensive API from Rodin/Meshy/Tripo.
BUT IT HAS FOLLOWING LIMITATIONS:
- Trellis is open-source and there is no off-the-shelf API model providers, you have to deploy it by yourself (refer to README).
- The API/Prompt has NOT been fully tested/tuned, may suffer from stability issues.
So use it at your own risk.
Demo
A minimal demo for generating a single object, more complicated prompt with blender-mcp is under tuning.
Features
- Generate 3D asset from natural language(TEXT) using Trellis API and import into blender
- Generate texture/materials from natural language(TEXT) for a given 3D mesh using Trellis API and import into blender
Roadmap
Prerequisites
- Python 3.10+
- Blender
- Trellis Blender Addon
- Trellis API Backend
- Claude / Cursor(SUGGESTED) / Windsurf
Installation
1. Trellis blender addon
- Download Trellis Blender Addon from here
- Open Blender -> Edit -> Preferences -> Add-ons -> Install from file -> Select the downloaded addon -> Install
- In 3D Viewport -> View3D > Sidebar > TRELLIS -> Start MCP Server
2. Configure API backend
As trellis is a free open-source text-to-3d model, you need to deploy your own trellis API backend with reference to README
# clone an API fork of trellis
git clone https://github.com/FishWoWater/TRELLIS
cd TRELLIS
# EDIT BACKEND URL in trellis_api/config.py
# configure the # of text workers and start ai worker
# no need for image workers
python trellis_api/ai_worker.py --text-workers-per-gpu 1 --image-workers-per-gpu 0
# start web server
python trellis_api/web_server.py
# or on windows local dev
python trellis_api/web_server_single.py
3. Configure the MCP server on Windsurf/Cursor/Claude
{
"mcpServers": {
"trellis-blender": {
"command": "uvx",
"args": [
"trellis-mcp"
]
}
}
}
Acknowledgements
- Backbone and brain: Trellis
- Inspiration: blender-mcp
- Borrow a lot of code Tripo MCP Service
相关推荐
Confidential guide on numerology and astrology, based of GG33 Public information
Converts Figma frames into front-end code for various mobile frameworks.
Advanced software engineer GPT that excels through nailing the basics.
Take an adjectivised noun, and create images making it progressively more adjective!
Descubra la colección más completa y actualizada de servidores MCP en el mercado. Este repositorio sirve como un centro centralizado, que ofrece un extenso catálogo de servidores MCP de código abierto y propietarios, completos con características, enlaces de documentación y colaboradores.
Manipulación basada en Micrypthon I2C del expansor GPIO de la serie MCP, derivada de AdaFruit_MCP230xx
Servidor MCP para obtener contenido de la página web con el navegador sin cabeza de dramaturgo.
Un poderoso complemento Neovim para administrar servidores MCP (protocolo de contexto del modelo)
Un bot de chat de IA para equipos pequeños y medianos, que apoyan modelos como Deepseek, Open AI, Claude y Gemini. 专为中小团队设计的 ai 聊天应用 , 支持 Deepseek 、 Open ai 、 Claude 、 Géminis 等模型。
Puente entre los servidores Ollama y MCP, lo que permite a LLM locales utilizar herramientas de protocolo de contexto del modelo
🔍 Habilitar asistentes de IA para buscar y acceder a la información del paquete PYPI a través de una interfaz MCP simple.
Reviews

user_WvExDhZ3
trellis_mcp is an exceptional tool that I genuinely enjoy using. Created by FishWoWater, this project is hosted on GitHub and has greatly simplified my workflow. It's well-documented and user-friendly, making it an easy recommendation. If you're looking for efficiency and reliability, this is the tool for you. Check it out at https://github.com/FishWoWater/trellis_mcp!